Volume 42 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Bingxin Huang, Lanping Ding, Yao Zhang, Youxuan Guo, Junxia Liang, Yanqi Xie, Yue Chu. Two-stage reproduction derived from cells of thallus could directly contribute to seeds for green tidal algal Enteromorpha(Ulva) prolifera/clathrata bloom, with disclosure of their ephemeral trait[J]. Acta Oceanologica Sinica, 2023, 42(9): 101-112. doi: 10.1007/s13131-023-2158-x
Citation: Bingxin Huang, Lanping Ding, Yao Zhang, Youxuan Guo, Junxia Liang, Yanqi Xie, Yue Chu. Two-stage reproduction derived from cells of thallus could directly contribute to seeds for green tidal algal Enteromorpha(Ulva) prolifera/clathrata bloom, with disclosure of their ephemeral trait[J]. Acta Oceanologica Sinica, 2023, 42(9): 101-112. doi: 10.1007/s13131-023-2158-x

Two-stage reproduction derived from cells of thallus could directly contribute to seeds for green tidal algal Enteromorpha(Ulva) prolifera/clathrata bloom, with disclosure of their ephemeral trait

doi: 10.1007/s13131-023-2158-x
Funds:  The National Natural Science Foundation of China under contract Nos 31970216 and 31670199.
More Information
  • Corresponding author: E-mail: skydlp@tjnu.edu.cn
  • Received Date: 2022-07-05
  • Accepted Date: 2022-11-02
  • Available Online: 2023-09-13
  • Publish Date: 2023-09-01
  • Green tidal algal Enteromorpha species complete their life cycles by the isomorphic alternation of generations. The provenance of green tide caused by them in the western Yellow Sea has been disputed. The cell reproduction derived from adult thallus was observed on E. clathrata collected from Shantou City, Guangdong Province in this study. Subsequently, it further found that E. proliferia collected from Qingdao City, Shandong Province and Qinhuangdao City, Hebei Province, produced reproductive cells by somatic cells of its early infantile thallus or branch. The latter is functionally similar to that the seedlings of red alga Porphyra yezoensis produce the monospores, and could exquisitely explain the ephemeral or opportunistic trait and environmental adaptation ability of Enteromorpha species. Changes in growth conditions may induce the two types of cell reproduction. They contribute to the bloom, and can effectively reveal the seasonally occurring large-scale and on-year and off-year phenomenon. The latter may have played a decisive role in its formation. This paper analyses the legal status of the species name, the type of generation during bloom, ephemeral traits, the role of microscopic propagule, the area of origin, on-year and off-year phenomenon, early warning and prevention and control of the species, and so on. On this basis, further study on the influence of environmental factors on cell reproduction of early infantile thalli or branches will achieve a positive effect for early warning and prevention and control of the green tidal algal bloom.
  • 11Ding Lanping, International Symposium of Advanced Research on Green Tides, May 09–11, 2014, Shanghai, China.
  • loading
  • Clayton M N. 1992. Propagules of marine macroalgae: structure and development. British Phycological Journal, 27(3): 219–232. doi: 10.1080/00071619200650231
    Cui Jianjun, Zhang Jianheng, Huo Yuanzi, et al. 2015. Adaptability of free-floating green tide algae in the Yellow Sea to variable temperature and light intensity. Marine Pollution Bulletin, 101(2): 660–666. doi: 10.1016/j.marpolbul.2015.10.033
    Deng Yunyan, Tang Xiaorong, Huang Bingxin, et al. 2011. The temperature character of marine green alga, Chaetomorpha valida, with analysis of its diffusion potential in marine algal flora of China. Oceanologia et Limnologia Sinica (in Chinese), 42(3): 404–408
    Ding Lanping. 2013. Flora Algarum Marinarum Sinicarum: Tomus IV Chlorophyta: No. I Ulotrichales, Chaetophorales, Phaeophilales, Ulvales, Prasiolales, Cladophorales, Acrosiphoniales (in Chinese). Beijing: Science Press
    Ding Lanping. 2022. Species diversity of genus Entermorpha in coastal China with the legitimacy evaluation on the scientific name of E. prolifera as the main origin ones of green tides in the Yellow Sea (in Chinese). Life World, (3): 30–33
    Ding Lanping, Fei Xiugeng, Lu Qinqin, et al. 2009. The Possibility analysis of habitats, origin and reappearance of bloom green alga (Enteromorpha prolifera) on inshore of western Yellow Sea. Chinese Journal of Oceanology and Limnology, 27(3): 421–424. doi: 10.1007/s00343-009-9277-x
    Ding Lanping, Luan Rixiao. 2009. The taxonomy, habit, and distribution of a green alga Enteromorpha prolifera (Ulvales, Chlorophyta). Oceanologia et Limnologia Sinica (in Chinese), 40(1): 68–71
    Ding Lanping, Teng Linhong, Lu Qinqin, et al. 2014. The morphological comparison, variation and molecular analysis between two green tidal algae Enteromorpha prolifera and E. clathrata from China. Algological Studies, 145–146: 27–38
    Fang Song, Wang Zongling, Li Yan, et al. 2012. The dynamics of micro-propagules before the green tide (Ulva prolifera) outbreak in the Southern Huanghai Sea and Changjiang (Yangtze) River Estuary area. Haiyang Xuebao (in Chinese), 34(4): 147–154
    Feng Zihui, Meng Yang, Lu Wei, et al. 2012. Studies on photosynthesis carbon fixation and ocean acidification prevention in Ulva prolifera I. Rate of photosynthesis carbon fixation and seawater pH increase. Haiyang Xuebao (in Chinese), 34(2): 162–168
    Gao Shan, Chen Xiaoyuan, Yi Qianqian, et al. 2010. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS ONE, 5(1): e8571. doi: 10.1371/journal.pone.0008571
    Gordon R, Brawley S H. 2004. Effects of water motion on propagule release from algae with complex life histories. Marine Biology, 145(1): 21–29
    Han Hongbin, Li Yan, Ma Xiaojun, et al. 2022. Factors influencing the spatial and temporal distributions of green algae micro-propagules in the coastal waters of Jinmenghaiwan, Qinhuangdao, China. Marine Pollution Bulletin, 175: 113328. doi: 10.1016/j.marpolbul.2022.113328
    Han Hongbin, Song Wei, Wang Zongling, et al. 2019. Distribution of green algae micro-propagules and their function in the formation of the green tides in the coast of Qinhuangdao, the Bohai Sea, China. Acta Oceanologica Sinica, 38(8): 72–77. doi: 10.1007/s13131-018-1278-1
    Han Hongbin, Wei Zhangliang, Huo Yuanzi, et al. 2015. Effects of temperature and light intensity on the release and germination of Ulva prolifera spores/gametes. Marine Fisheries (in Chinese), 37(6): 517–524
    Hayden H S, Blomster J, Maggs C A, et al. 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology, 38(3): 277–294. doi: 10.1080/1364253031000136321
    He Peimin, Zhang Jianheng, Huo Yuanzi, et al. 2019. Green Tides of China (in Chinese). Beijing: Science Press
    Hiraoka M, Dan A, Shimada S, et al. 2003. Different life histories of Enteromorpha prolifera (Ulvales, Chlorophyta) from four rivers on Shikoku Island, Japan. Phycologia, 42(3): 275–284. doi: 10.2216/i0031-8884-42-3-275.1
    Hoffmann A J. 1987. The arrival of seaweed propagules at the shore: a review. Botanica Marina, 30(2): 151–166. doi: 10.1515/botm.1987.30.2.151
    Hu Yingying. 2013. Seasonal and interannual variations of the water temperature in the Yellow Sea and East China Sea (in Chinese)[dissertation]. Qingdao: Ocean University of China
    Huang Zhiyuan, Zhong Zheke, Zhang Xiaoping, et al. 2021. Formation mechanism and regulation measures of on-year and off-year of Moso Bamboo forest: a review. World Forestry Research (in Chinese), 34(5): 20–25
    Huo Yuanzi, Han Hongbin, Hua Liang, et al. 2016. Tracing the origin of green macroalgal blooms based on the large scale spatio-temporal distribution of Ulva microscopic propagules and settled mature Ulva vegetative thalli in coastal regions of the Yellow Sea, China. Harmful Algae, 59: 91–99. doi: 10.1016/j.hal.2016.09.005
    Jiang Hongxia, Ni Xue, Hu Baoyun, et al. 2015. Physiological characteristics of floating Enteromorpha prolifera in the Yellow Sea. Jiangsu Agricultural Sciences (in Chinese), 43(2): 355–357
    Kamermans P, Malta E, Verschuure J M, et al. 1998. Role of cold resistance and burial for winter survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Veerse Meer Lagoon, The Netherlands). Marine Biology, 131(1): 45–51. doi: 10.1007/s002270050295
    Li Xinshu, Xu Juntian, Yao Dongrui, et al. 2013. Effects of nitrogen and phosphorus on the growth, photosynthesis and pigments of Ulva prolifera. Journal of Fisheries of China (in Chinese), 37(8): 1206–1212. doi: 10.3724/SP.J.1231.2013.38319
    Lin Apeng, Wang Chao, Qiao Hongjin, et al. 2009. Study on the photosynthetic performances of Enteromorpha prolifera collected from the surface and bottom of the sea of Qingdao sea area. Chinese Science Bulletin, 54(3): 399–404
    Liu Feng, Pang Shaojun, Chopin T, et al. 2013. Understanding the recurrent large-scale green tide in the Yellow Sea: temporal and spatial correlations between multiple geographical, aquacultural and biological factors. Marine Environmental Research, 83: 38–47. doi: 10.1016/j.marenvres.2012.10.007
    Liu Feng, Pang Shaojun, Shan Tifeng, et al. 2010. A novel method to quantify the microscopic stages of Ulva species in seawater and its applications in forcasting green tides of the Yellow Sea. Chinese Science Bulletin (in Chinese), 55(6): 468–473
    Liu Feng, Pang Shaojun, Zhao Xiaobo, et al. 2012. Quantitative, molecular and growth analyses of Ulva microscopic propagules in the coastal sediment of Jiangsu Province where green tides initially occurred. Marine Environmental Research, 74: 56–63. doi: 10.1016/j.marenvres.2011.12.004
    Liu Xiangqing, Wang Zongling, Li Yan, et al. 2015. Effects of temperature on the germination of green algal micro-propagules in the sediment. Advances in Marine Science (in Chinese), 33(2): 219–226
    Lotze H K, Schramm W, Schories D, et al. 1999. Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia, 119(1): 46–54. doi: 10.1007/s004420050759
    Ma Wenfei, Li Jingyu. 2022. Analysis of the underlying mechanisms of green tide with a perspective of algae ecophysiology. Chinese Journal of Applied Ecology (in Chinese), 33(5): 1420–1428
    Ma Jiahai, Zhang Liming, Ji Chuanli, et al. 1998. On the refrigerated nets of Porphyra yezoensis and quality analysis of produce. Journal of Fisheries of China (in Chinese), 22(S1): 65–71
    Miao Xiaoxiang, Xiao Jie, Pang Min, et al. 2018. Effect of the large-scale green tide on the species succession of green macroalgal micro-propagules in the coastal waters of Qingdao, China. Marine Pollution Bulletin, 126: 549–556. doi: 10.1016/j.marpolbul.2017.09.060
    Miao Xiaoxiang, Xiao Jie, Wang Zongling, et al. 2020. Study on the tempo-spatial distribution of green macroalgal micro-propagules along the coasts of Jiangsu and Shandong Provinces. Haiyang Xuebao (in Chinese), 42(2): 115–123
    Santelices B, Hoffmann A J, Aedo D, et al. 1995. A bank of microscopic forms on disturbed boulders and stones in tide pools. Marine Ecology Progress Series, 129(1–3): 215–228
    Shen Songdong. 2022. Brief introduction of micropropagule. Oceanologia et Limnologia Sinica (in Chinese), 53(1): 1–7
    Song Wei, Peng Keqin, Xiao Jie, et al. 2015. Effects of temperature on the germination of green algae micro-propagules in coastal waters of the Subei Shoal, China. Estuarine, Coastal and Shelf Science, 163: 63–68
    Taiz L, Zeiger E, Møller I M, et al. 2015. Plant Physiology and Development. 6th ed. Sunderland: Sinauer Associates
    Togashi T, Cox P A. 2001. Tidal-linked synchrony of gamete release in the marine green alga, Monostroma angicava Kjellman. Journal of Experimental Marine Biology and Ecology, 264(2): 117–131
    Wang Hui. 2017. Photosynthetic changes and response towards signaling molecule nitric oxide during the sporulation of Ulva prolifera (in Chinese)[dissertation]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences
    Wang Hui, Lin Apeng, Gu Wenhui, et al. 2016. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain. Scientific Reports, 6: 24923. doi: 10.1038/srep24923
    Wang Xiaokun, Ma Jiahai, Ye Daocai, et al. 2007a. Preliminary study on the life history of Enteromorpha prolifera. Marine Science Bulletin (in Chinese), 26(5): 112–116
    Wang Guangce, Wang Hui, Gao Shan, et al. 2020. Study on the biological mechanism of green tide. Oceanologia et Limnologia Sinica (in Chinese), 51(4): 789–808
    Wang Xiangyu, Wu Haiyi. 2015. Nutrient uptaking and growth performance of Ulva prolifera. Journal of Guangxi Academy of Sciences (in Chinese), 31(4): 243–246, 252
    Wang Jianwei, Yan Binlun, Lin Apeng, et al. 2007b. Ecological factor research on the growth and induction of spores release in Enteromorpha prolifera (chlorophyta). Marine Science Bulletin (in Chinese), 26(2): 60–65
    Worm B, Lotze H K, Sommer U. 2001. Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia, 128(2): 281–293. doi: 10.1007/s004420100648
    Wu Hailong, Gao Guang, Zhong Zhihai, et al. 2018. Physiological acclimation of the green tidal alga Ulva prolifera to a fast-changing environment. Marine Environmental Research, 137: 1–7. doi: 10.1016/j.marenvres.2018.02.018
    Xia Bin, Ma Shaosai, Cui Yi, et al. 2009. Distribution of temperature, salinity, dissolved oxygen, nutrients and their relationships with green tide in Enteromorpha prolifera outbreak area of the Yellow Sea. Progress in Fishery Sciences (in Chinese), 30(5): 94–101
    Xie Yanqi. 2013. The bioecological mechanism on green tidal blooming of Enteromorpha species (in Chinese)[dissertation]. Shantou: Shantou University
    Yang Jing, Zhang Si, Liu Guimei. 2017. Variability analysis of the Green Tide based on satellite remote sensing monitoring data from 2011 to 2016 in the Yellow Sea. Marine Forecasts (in Chinese), 34(3): 56–61
    Ye Naihao, Zhang Xiaowen, Mao Yuze, et al. 2008. Life history of Enteromorpha prolifera under laboratory conditions. Journal of Fishery Sciences of China (in Chinese), 15(5): 853–859
    Zhang Xiaowen, Wang Hongxia, Mao Yuze, et al. 2010. Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. Journal of Applied Phycology, 22(2): 173–180. doi: 10.1007/s10811-009-9437-6
    Zhang Xiaowen, Xu Dong, Mao Yuze, et al. 2011. Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom. Limnology and Oceanography, 56(1): 233–242. doi: 10.4319/lo.2011.56.1.0233
    Zhang Yao, Yan Jing, Huang Bingxin, et al. 2023. The epiphytic macroalgae on red alga Gelidium amansii from Qinhuangdao area, Bohai Sea in autumn based on thermostatic incubation experiments. Oceanologia et Limnologia Sinica (in Chinese), 54(2): 493–451
    Zhao Xiaohui, Cui Jianjun, Zhang Jianheng, et al. 2019. Reproductive strategy of the floating alga Ulva prolifera in blooms in the Yellow Sea based on a combination of zoid and chromosome analysis. Marine Pollution Bulletin, 146: 584–590. doi: 10.1016/j.marpolbul.2019.07.018
    Zou Dinghui, Xia Jianrong. 2004. Studies progresses of sexual reproductive ecology in seaweeds. Acta Ecologica Sinica (in Chinese), 24(12): 2870–2877
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (45) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint