Xiaoyin Tang, Kaixun Zhang, Shuchun Yang, Shuai Guo, Xinyan Zhao, Zhizhao Bai. Thermal and exhumation history of the Songnan Low Uplift, Qiongdongnan Basin: constraints from the apatite fission-track and zircon (U-Th)/He thermochronology[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2253-z
Citation:
Xiaoyin Tang, Kaixun Zhang, Shuchun Yang, Shuai Guo, Xinyan Zhao, Zhizhao Bai. Thermal and exhumation history of the Songnan Low Uplift, Qiongdongnan Basin: constraints from the apatite fission-track and zircon (U-Th)/He thermochronology[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2253-z
Xiaoyin Tang, Kaixun Zhang, Shuchun Yang, Shuai Guo, Xinyan Zhao, Zhizhao Bai. Thermal and exhumation history of the Songnan Low Uplift, Qiongdongnan Basin: constraints from the apatite fission-track and zircon (U-Th)/He thermochronology[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2253-z
Citation:
Xiaoyin Tang, Kaixun Zhang, Shuchun Yang, Shuai Guo, Xinyan Zhao, Zhizhao Bai. Thermal and exhumation history of the Songnan Low Uplift, Qiongdongnan Basin: constraints from the apatite fission-track and zircon (U-Th)/He thermochronology[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2253-z
Thermal and exhumation history of the Songnan Low Uplift, Qiongdongnan Basin: constraints from the apatite fission-track and zircon (U-Th)/He thermochronology
Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift (SNLU) of the Qiongdongnan Basin. These findings indicate that the bedrock buried hills in this basin hold great potential for exploration. Borehole samples taken from the granite buried hills in the SNLU were analyzed using apatite fission track (AFT) and zircon (U-Th)/He data to unravel the thermal history of the basement rock. This information is crucial for understanding the processes of exhumation and alteration that occurred after its formation. Thermal modeling of a sample from the western bulge of the SNLU revealed a prolonged cooling event from the late Mesozoic to the Oligocene period (~80−23.8 Ma), followed by a heating stage from the Miocene epoch until the present (~23.8 Ma to present). In contrast, the sample from the eastern bulge experienced a more complex thermal history. It underwent two cooling stages during the late Mesozoic to late Eocene period (~80−36.4 Ma) and the late Oligocene period (~30−23.8 Ma), interspersed with two heating phases during the late Eocene to early Oligocene period (~36.4−30 Ma) and the Miocene epoch to recent times (~23.8−0 Ma), respectively. The differences in exhumation histories between the western and eastern bulges during the late Eocene to Oligocene period in the SNLU can likely be attributed to differences in fault activity. Unlike typical passive continental margin basins, the SNLU has experienced accelerated subsidence after the rifting phase, which began around 5.2 Ma ago. The possible mechanism for this abnormal post-rifting subsidence may be the decay or movement of the deep thermal source and the rapid cooling of the asthenosphere. Long-term and multi-episodic cooling and exhumation processes play a key role in the alteration of bedrock and contribute to the formation of reservoirs. On the other hand, rapid post-rifting subsidence (sedimentation) promotes the formation of cap rocks.
Figure 1. Regional geological outline of the Qiongdongnan Basin (QDNB) (a), and the basin tectonic units (b). Fault distribution and observation points in b are from Zhou et al. (2019).
Figure 4. Chondrite-normalized REE patterns (a) and primitive mantle normalized trace element patterns (b) of the basement samples.
Figure 5. Radial plots of apatite fission-track (left) and confined track length histograms (right). Central ages are calculated using RadialPlotter (Vermeesch, 2009). MTL-mean track length, SD-standard deviation, NL-number of spontaneous tracks.
Figure 6. Modeling results for sample Q1 (a) from the western bulge of the Songnan Low Uplift and sample Q12 (b) from the eastern bulge. Illustrated are the t-T paths on the left (a1 & b1) with the corresponding confined fission-track length frequency distribution (a2 & b2) and the ZHe diffusion profile (b3) on the right. The t-T paths on the left show different fits: green paths, acceptable fit (GOF ≥ 5%); pink paths, good fit (GOF ≥ 50%); black line, weighted mean path.
Figure 7. Comparative presentation of weighted mean paths from thermal models. The dashed line is the weighted mean thermal history for sample Q12 from the east bulge, and the solid line is the weighted mean thermal history for sample Q1 from the west bulge.
Figure 8. Activity rate of the main controlling faults in the Songnan Low Uplift during the Eocene-early Oligocene and Late Oligocene. (a)-No.2 fault, (b)-No.11 fault (Zhou et al., 2019). For locations of the observation points see Fig. 1b.