Turn off MathJax
Article Contents
Weiwei Zhang, Xiaoyi Yang, Wei Zhuang, Xiaohai Yan. On the longitudinal shifts of the Agulhas retroflection point[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2295-x
Citation: Weiwei Zhang, Xiaoyi Yang, Wei Zhuang, Xiaohai Yan. On the longitudinal shifts of the Agulhas retroflection point[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-023-2295-x

On the longitudinal shifts of the Agulhas retroflection point

doi: 10.1007/s13131-023-2295-x
Funds:  The National Key R&D Program of China under contract No. 2019YFA0606702; the National Natural Science Foundation of China under contract Nos 42176222, 91858202, 41630963, and 41776003; the National Science Foundation under contract No. NSF-IIS-2123264; the fund suported by the National Aeronautics and Space Administration under contract No. NASA-80NSSC20M0220.
More Information
  • Corresponding author: E-mail: xyyang@xmu.edu.cn
  • Received Date: 2023-11-20
  • Accepted Date: 2024-01-24
  • Available Online: 2024-03-15
  • The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage. It is difficult to measure in situ transport of the Agulhas leakage as well as the Agulhas retroflection position due to their intermittent nature. In this study, an innovative kinematic algorithm was designed and applied to the gridded altimeter observational data, to ascertain the longitudinal position of Agulhas retroflection, the stability of Agulhas jet stream, as well as its strength. The results show that the east-west shift of retroflection is related neither to the strength of Agulhas current nor to its stability. Further analysis uncovers the connection between the westward extension of Agulhas jet stream and an anomalous cyclonic circulation at its northern side, which is likely attributed to the local wind stress curl anomaly. To confirm the effect of local wind forcing on the east-west shift of retroflection, numerical sensitivity experiments were conducted. The results show that the local wind stress can induce a similar longitudinal shift of the retroflection as altimetry observations. Further statistical and case study indicates that whether an Agulhas ring can continuously migrate westward to the Atlantic Ocean or re-merge into the main flow depends on the retroflection position. Therefore, the westward retroflection may contribute to a stronger Agulhas leakage than the eastward retroflection.
  • loading
  • Backeberg B C, Penven P, Rouault M. 2012. Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system. Nature Climate Change, 2(8): 608–612, doi: 10.1038/nclimate1587
    Beal L M, Bryden H L. 1999. The velocity and vorticity structure of the Agulhas Current at 32°S. Journal of Geophysical Research: Oceans, 104(C3): 5151–5176, doi: 10.1029/1998JC900056
    Beal L M, Elipot S. 2016. Broadening not strengthening of the Agulhas Current since the early 1990s. Nature, 540(7634): 570–573, doi: 10.1038/nature19853
    Biastoch A, Böning C W, Lutjeharms J R E. 2008. Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456(7221): 489–492, doi: 10.1038/nature07426
    Biastoch A, Böning C W, Schwarzkopf F U, et al. 2009. Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462(7272): 495–498, doi: 10.1038/nature 08519
    Biastoch A, Durgadoo J V, Morrison A K, et al. 2015. Atlantic multi-decadal oscillation covaries with Agulhas leakage. Nature Communications, 6(1): 10082, doi: 10.1038/ncomms10082
    Bryden H L, Beal L M, Duncan L M. 2005. Structure and transport of the Agulhas Current and its temporal variability. Journal of Oceanography, 61(3): 479–492, doi: 10.1007/s10872-005-0057-8
    Byrne D A, Gordon A L, Haxby W F. 1995. Agulhas eddies: a synoptic view using Geosat ERM data. Journal of Physical Oceanography, 25(5): 902–917, doi: 10.1175/1520-0485(1995)025<0902:AEASVU>2.0.CO;2
    Cheng Yu, Putrasahan D, Beal L, et al. 2016. Quantifying Agulhas leakage in a high-resolution climate model. Journal of Climate, 29(19): 6881–6892, doi: 10.1175/JCLI-D-15-0568.1
    Daher H, Beal L M, Schwarzkopf F U. 2020. A new improved estimation of Agulhas leakage using observations and simulations of lagrangian floats and drifters. Journal of Geophysical Research: Oceans, 125(4): e2019JC015753, doi: 10.1029/2019JC015753
    de Ruijter W P M, Biastoch A, Drijfhout S S, et al. 1999. Indian-Atlantic interocean exchange: dynamics, estimation and impact. Journal of Geophysical Research: Oceans, 104(C9): 20885–20910, doi: 10.1029/1998JC900099
    de Ruijter W P M, van Aken H M, Beier E J, et al. 2004. Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact. Deep Sea Research Part I: Oceanographic Research Papers, 51(3): 383–400, doi: 10.1016/j.dsr.2003.10.011
    Dencausse G, Arhan M, Speich S. 2010a. Spatio-temporal characteristics of the Agulhas Current retroflection. Deep Sea Research Part I: Oceanographic Research Papers, 57(11): 1392–1405., doi: 10.1016/j.dsr.2010.07.004
    Dencausse G, Arhan M, Speich S. 2010b. Routes of Agulhas rings in the southeastern Cape Basin. Deep Sea Research Part I: Oceanographic Research Papers, 57(11): 1406–1421, doi: 10.1016/j.dsr.2010.07.008
    Dijkstra H A, de Ruijter W P M. 2001. On the physics of the Agulhas Current: steady retroflection regimes. Journal of Physical Oceanography, 31(10): 2971–2985, doi: 10.1175/1520-0485(2001)031<2971:OTPOTA>2.0.CO;2
    Durgadoo J V, Loveday B R, Reason C J C, et al. 2013. Agulhas leakage predominantly responds to the Southern Hemisphere westerlies. Journal of Physical Oceanography, 43(10): 2113–2131, doi: 10.1175/JPO-D-13-047.1
    Feron R C V, de Ruijter W P M, Oskam D. 1992. Ring shedding in the Agulhas Current system. Journal of Geophysical Research: Oceans, 97(C6): 9467–9477, doi: 10.1029/92JC00736
    Gunn K L, Beal L M, Elipot S, et al. 2020. Mixing of subtropical, central, and intermediate waters driven by shifting and pulsing of the Agulhas Current. Journal of Physical Oceanography, 50(12): 3545–3560, doi: 10.1175/JPO-D-20-0093.1
    Haidvogel D B, Arango H G, Hedstrom K, et al. 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3/4): 239–281, doi: 10.1016/S0377-0265(00)00049-X
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049, doi: 10.1002/qj.3803
    Le Bars D, de Ruijter W P M, Dijkstra H A. 2012. A new regime of the Agulhas Current retroflection: turbulent choking of Indian-Atlantic leakage. Journal of Physical Oceanography, 42(7): 1158–1172, doi: 10.1175/JPO-D-11-0119.1
    Loveday B R, Durgadoo J V, Reason C J C, et al. 2014. Decoupling of the Agulhas leakage from the Agulhas Current. Journal of Physical Oceanography, 44(7): 1776–1797, doi: 10.1175/JPO-D-13-093.1
    Loveday B R, Penven P, Reason C J C. 2015. Southern annular mode and westerly-wind-driven changes in Indian-Atlantic exchange mechanisms. Geophysical Research Letters, 42(12): 4912–4921, doi: 10.1002/2015GL064256
    Lutjeharms J R E, Boebel O, Rossby H T. 2003. Agulhas cyclones. Deep Sea Research Part II: Topical Studies in Oceanography, 50(1): 13–34, doi: 10.1016/S0967-0645(02)00378-8
    Lutjeharms J R E, van Ballegooyen R C. 1988. The retroflection of the Agulhas Current. Journal of Physical Oceanography, 18(11): 1570–1583, doi: 10.1175/1520-0485(1988)018<1570:TROTAC>2.0.CO;2
    Marchesiello P, McWilliams J C, Shchepetkin A. 2003. Equilibrium structure and dynamics of the California Current System. Journal of Physical Oceanography, 33(4): 753–783, doi: 10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2
    McMonigal K, Beal L M, Elipot S, et al. 2020. The impact of meanders, deepening and broadening, and seasonality on Agulhas Current temperature variability. Journal of Physical Oceanography, 50(12): 3529–3544, doi: 10.1175/JPO-D-20-0018.1
    Mulet S, Rio M H, Etienne H, et al. 2021. The new CNES-CLS18 global mean dynamic topography. Ocean Science, 17(3): 789–808, doi: 10.5194/os-17-789-2021
    Ou H W, de Ruijter W P M. 1986. Separation of an inertial boundary current from a curved coastline. Journal of Physical Oceanography, 16(2): 280–289, doi: 10.1175/1520-0485(1986)016<0280:SOAIBC>2.0.CO;2
    Reynolds R W, Smith T M, Liu C Y, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473–5496, doi: 10.1175/2007JCLI1824.1
    Rio M H, Santoleri R. 2018. Improved global surface currents from the merging of altimetry and sea surface temperature data. Remote Sensing of Environment, 216: 770–785, doi: 10.1016/j.rse.2018.06.003
    Rouault M, Penven P, Pohl B. 2009. Warming in the Agulhas Current system since the 1980’s. Geophysical Research Letters, 36(12): L12602
    Russo C S, Lamont T, Krug M. 2021. Spatial and temporal variability of the Agulhas retroflection: Observations from a new objective detection method. Remote Sensing of Environment, 253: 112239, doi: 10.1016/j.rse.2020.112239
    Rühs S, Schmidt C, Schubert R, et al. 2022. Robust estimates for the decadal evolution of Agulhas leakage from the 1960s to the 2010s. Communications Earth & Environment, 3: 318
    Schouten M W, de Ruijter W P M, van Leeuwen P J, et al. 2000. Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean. Journal of Geophysical Research: Oceans, 105(C9): 21913–21925, doi: 10.1029/1999JC000046
    Schubert R, Gula J, Biastoch A. 2021. Submesoscale flows impact Agulhas leakage in ocean simulations. Communications Earth & Environment, 2(1): 197
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404, doi: 10.1016/j.ocemod.2004.08.002
    Taburet G, Sanchez-Roman A, Ballarotta M, et al. 2019. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Science, 15(5): 1207–1224, doi: 10.5194/os-15-1207-2019
    van Aken H M, van Veldhoven A K, Veth C, et al. 2003. Observations of a young Agulhas ring, Astrid, during MARE in March 2000. Deep Sea Research Part II: Topical Studies in Oceanography, 50(1): 167–195, doi: 10.1016/S0967-0645(02)00383-1
    van Sebille E, Barron C N, Biastoch A, et al. 2009a. Relating Agulhas leakage to the Agulhas Current retroflection location. Ocean Science, 5(4): 511–521, doi: 10.5194/os-5-511-2009
    van Sebille E, Biastoch A, van Leeuwen P J, et al. 2009b. A weaker Agulhas Current leads to more Agulhas leakage. Geophysical Research Letters, 36(3): L03601
    Warner J C, Sherwood C R, Arango H G, et al. 2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 8(1/2): 81–113, doi: 10.1016/j.ocemod.2003.12.003
    Wei Lansu, Wang Chunzai. 2023. Characteristics of ocean mesoscale eddies in the Agulhas and Tasman Leakage regions from two eddy datasets. Deep Sea Research Part II: Topical Studies in Oceanography, 208: 105264, doi: 10.1016/j.dsr2.2023.105264
    Zhu Yanan, Li Yuanlong, Zhang Zhengguang, et al. 2021. The observed Agulhas retroflection behaviors during 1993–2018. Journal of Geophysical Research: Oceans, 126(12): e2021JC017995, doi: 10.1029/2021JC017995
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (73) PDF downloads(5) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint