Volume 43 Issue 5
May  2024
Turn off MathJax
Article Contents
Zhiqiang Chen, Xidong Wang, Xiangyu Wu, Yuan Cao, Zikang He, Dakui Wang, Jian Chen. Three-dimensional thermohaline structure estimation derived from HY-2 satellite data over the Maritime Silk Road and its applications[J]. Acta Oceanologica Sinica, 2024, 43(5): 41-53. doi: 10.1007/s13131-023-2299-6
Citation: Zhiqiang Chen, Xidong Wang, Xiangyu Wu, Yuan Cao, Zikang He, Dakui Wang, Jian Chen. Three-dimensional thermohaline structure estimation derived from HY-2 satellite data over the Maritime Silk Road and its applications[J]. Acta Oceanologica Sinica, 2024, 43(5): 41-53. doi: 10.1007/s13131-023-2299-6

Three-dimensional thermohaline structure estimation derived from HY-2 satellite data over the Maritime Silk Road and its applications

doi: 10.1007/s13131-023-2299-6
Funds:  The China-ASEAN Marine Cooperation Foundation; the Fundamental Research Funds for the Central Universities under contract No. B210203041; the Postgraduate Research & Practice Innovation Program of Jiangsu Province under contract No. KYCX23_0657; the opening project of the Key Laboratory of Marine Environmental Information Technology of Ministry of Natural Resources under contract No. 521037412.
More Information
  • Corresponding author: E-mail: wxy@nmefc.cn
  • Received Date: 2023-11-05
  • Accepted Date: 2024-01-15
  • Available Online: 2024-04-30
  • Publish Date: 2024-05-30
  • Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems. This study employs a statistic regression reconstruction method, in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2 (HY-2) satellite fusion data, to establish an operational quasi-real-time three-dimensional (3D) temperature and salinity products over the Maritime Silk Road. These products feature a daily temporal resolution and a spatial resolution of 0.25° × 0.25° and exhibit stability and continuity. We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations, after comparing them against Argo observations and ocean analysis data from 2022. The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures, along with structural changes resulting from mesoscale processes, and the upper ocean’s responses to tropical cyclones. Furthermore, the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields. As a result, the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decision-making during emergencies, and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems. These contributions enhance the safety and stability of ocean subsurface activities and navigation.
  • loading
  • Ballabrera-Poy J, Mourre B, Garcia-Ladona E, et al. 2009. Linear and non-linear T-S models for the eastern North Atlantic from Argo data: Role of surface salinity observations. Deep-Sea Research Part I: Oceanographic Research Papers, 56(10): 1605–1614, doi: 10.1016/j.dsr.2009.05.017
    Ballarotta M, Ubelmann C, Veillard P, et al. 2023. Improved global sea surface height and current maps from remote sensing and in situ observations. Earth System Science Data, 15(1): 295–315, doi: 10.5194/essd-15-295-2023
    Bao Senliang, Wang Huizan, Zhang Ren, et al. 2019. Comparison of satellite-derived sea surface salinity products from SMOS, aquarius, and SMAP. Journal of Geophysical Research: Oceans, 124(3): 1932–1944, doi: 10.1029/2019JC014937
    Buongiorno Nardelli B, Guinehut S, Pascual A, et al. 2012. Towards high resolution mapping of 3-D mesoscale dynamics from observations. Ocean Science, 8(5): 885–901, doi: 10.5194/os-8-885-2012
    Burnett W, Harper S, Preller R, et al. 2014. Overview of operational ocean forecasting in the US Navy: past, present, and future. Oceanography, 27(3): 24–31, doi: 10.5670/oceanog.2014.65
    Carnes M R, Mitchell J L, De Witt P W. 1990. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles. Journal of Geophysical Research: Oceans, 95(C10): 17979–17992, doi: 10.1029/JC095iC10p17979
    Chen Gengxin, Hou Yijun, Chu Xiaoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(C6): C06018, doi: 10.1029/2010 JC006716
    Chen Zhiqiang, Wang Xidong, Liu Lei. 2020. Reconstruction of three-dimensional ocean structure from sea surface data: an application of isQG method in the Southwest Indian Ocean. Journal of Geophysical Research: Oceans, 125(6): e2020jc016351, doi: 10.1029/2020JC016351
    Chen Zhiqiang, Wang Xidong, Liu Lei, et al. 2023. Estimating three-dimensional structures of eddy in the South Indian Ocean from the satellite observations based on the isQG method. Earth and Space Science, 10(10): e2023EA002991, doi: 10.1029/2023 EA002991
    Cheng Lijing, Zhu Jiang, Sriver R L. 2015. Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data. Ocean Science, 11(5): 719–741, doi: 10.5194/os-11-719-2015
    Copernicus Marine Service. 2023. Global ocean physics analysis and forecast. https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_PHY_001_024/description [2023-11-30/2023-12-29], doi: 10.48670/moi-00016
    Dash P, Ignatov A, Martin M, et al. 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons—Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM). Deep-Sea Research Part II: Topical Studies in Oceanography, 77–80: 31–43, doi: 10.1016/j.dsr2. 2012.04.002
    Dong Changming, Xu Guangjun, Han Guoqing, et al. 2022. Recent developments in artificial intelligence in oceanography. Ocean-Land-Atmosphere Research, 2022: 9870950, doi: 10.34133/2022/9870950
    Dong Chao, Chen Dake, Wang Dongxiao, et al. 2023. Intelligent swift ocean observing system. Ocean-Land-Atmosphere Research, 2: 0022., doi: 10.34133/olar.0022
    Fox D N, Teague W J, Barron C N, et al. 2002. The modular ocean data assimilation system (MODAS). Journal of Atmospheric and Oceanic Technology, 19(2): 240–252, doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
    Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5): 845–857, doi: 10.5194/os-8-845-2012
    Guinehut S, Le Traon P Y, Larnicol G, et al. 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—a first approach based on simulated observations. Journal of Marine Systems, 46(1–4): 85–98, doi: 10.1016/j.jmarsys.2003.11.022
    He Zikang, Wang Xidong, Wu Xinrong, et al. 2021. Projecting three-dimensional ocean thermohaline structure in the North Indian Ocean from the satellite sea surface data based on a variational method. Journal of Geophysical Research: Oceans, 126(1): e2020JC016759, doi: 10.1029/2020JC016759
    Huang Longyu, Yang Jingsong, Ma Zetai, et al. 2023. High-frequency observations of oceanic internal waves from geostationary orbit satellites. Ocean-Land-Atmosphere Research, 2: 0024., doi: 10.34133/olar.0024
    Hurlburt H E. 1986. Dynamic transfer of simulated altimeter data into subsurface information by a numerical ocean model. Journal of Geophysical Research: Oceans, 91(C2): 2372–2400, doi: 10.1029/JC091iC02p02372
    Isern-Fontanet J, Ballabrera-Poy J, Turiel A, et al. 2017. Remote sensing of ocean surface currents: A review of what is being observed and what is being assimilated. Nonlinear Processes in Geophysics, 24(4): 613–643, doi: 10.5194/npg-24-613-2017
    Isern-Fontanet J, Lapeyre G, Klein P, et al. 2008. Three-dimensional reconstruction of oceanic mesoscale currents from surface information. Journal of Geophysical Research, 113(C9): C09005, doi: 10.1029/2007JC004692
    Knapp K R, Kruk M C, Levinson D H, et al. 2010. The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bulletin of the American Meteorological Society, 91(3): 363–376., doi: 10.1175/2009BAMS2755.1
    Liu Lei, Peng Shiqiu, Huang Ruixin. 2017. Reconstruction of ocean’s interior from observed sea surface information. Journal of Geophysical Research: Oceans, 122(2): 1042–1056, doi: 10.1002/2016JC011927
    Liu Lei, Xue Huijie. 2022. Estimating the Ocean Interior from Satellite Observations in the Kerguelen Area (Southern Ocean): A combined investigation using high-resolution CTD data from animal-borne instruments. Journal of Physical Oceanography, 52(10): 2463–2478, doi: 10.1175/JPO-D-21-0183.1
    Liu Lei, Yu Xiaolong, Xue Huijie, et al. 2023. Reconstructability of open-ocean upper-layer dynamics from surface observations using surface quasigeostrophy (SQG) theory. Journal of Geophysical Research: Oceans, 128(12): e2023JC020124., doi: 10.1029/2023JC020124
    Ma Zhanhong, Fei Jianfang, Huang Xiaogang, et al. 2018. Modulating effects of mesoscale oceanic eddies on sea surface temperature response to tropical cyclones over the Western North Pacific. Journal of Geophysical Research: Atmospheres, 123(1): 367–379., doi: 10.1002/2017JD027806
    Martin M, Dash P, Ignatov A, et al. 2012. Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep-Sea Research Part II: Topical Studies in Oceanography, 77–80: 21–30, doi: 10.1016/j.dsr2.2012.04.013
    Mei Wei, Pasquero C. 2013. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. Journal of Climate, 26(11): 3745–3765, doi: 10.1175/JCLI-D-12-00125.1
    Morrow R, Fu L L, Ardhuin F, et al. 2019. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission. Frontiers in Marine Science, 6: 232, doi: 10.3389/fmars.2019.00232
    Mulet S, Rio M H, Mignot A, et al. 2012. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep-Sea Research Part II: Topical Studies in Oceanography, 77–80: 70–81, doi: 10.1016/j.dsr2.2012.04.012
    Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05002, doi: 10.1029/2010JC006790
    National Centers for Environmental Information. 2023. WOA 2018 Data Access: Statistical mean of temperature on 1° grid for all decades. https://www.ncei.noaa.gov/products/world-ocean-atlas [2018-09-30/2023-12-29]
    Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2): 153–175, doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24(2): 233–260, doi: 10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
    Qiao Fangli, Wang Guansuo, Khokiattiwong S, et al. 2019. China published ocean forecasting system for the 21st-Century Maritime Silk Road on December 10, 2018. Acta Oceanologica Sinica, 38(1): 1–3, doi: 10.1007/s13131-019-1365-y
    Qiu Bo, Chen Shuiming, Klein P, et al. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. Journal of Physical Oceanography, 44(12): 3079–3098, doi: 10.1175/JPO-D-14-0071.1
    Riser S C, Freeland H J, Roemmich D, et al. 2016. Fifteen years of ocean observations with the global Argo array. Nature Climate Change, 6(2): 145–153, doi: 10.1038/nclimate2872
    Su Hua, Lu Wenfang, Wang An, Zhang Tianyi. 2023. Al-based subsurface thermohaline structure retrieval from remote sensing observations. In: Li Xiaofeng, Wang Fan, eds, Artificial Intelligence Oceanography. Singapore: Springer Nature Singapore, 105–123, doi: 10.1007/978-981-19-6375-9_5
    Tang Bo, Zhao Dandan, Cui Chaoran, et al. 2022. Reconstruction of ocean temperature and salinity profiles in the northern South China Sea using satellite observations. Frontiers in Marine Science, 9: 945835, doi: 10.3389/fmars.2022.945835
    Wang Xidong, Chu P C, Han Guijun, et al. 2012a. A fully conserved minimal adjustment scheme with (T, S) coherency for stabilization of hydrographic profiles. Journal of Atmospheric and Oceanic Technology, 29(12): 1854–1865, doi: 10.1175/JTECH-D-12-00025.1
    Wang Xidong, Li Wei, Qi Yiquan, et al. 2012b. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep-Sea Research Part I: Oceanographic Research Papers, 61: 21–33, doi: 10.1016/j.dsr.2011.11.006
    Xie Huarong, Xu Qing, Cheng Yongcun, et al. 2022. Reconstruction of subsurface temperature field in the south china sea from satellite observations based on an attention U-Net model. IEEE Transactions on Geoscience and Remote Sensing, 60: 4209319, doi: 10.1109/TGRS.2022.3200545
    Yan Hengqian, Zhang Ren, Wang Huizan, et al. 2021a. A surface quasi-geostrophic—based dynamical-statistical framework to retrieve interior temperature/salinity from ocean surface. Journal of Geophysical Research: Oceans, 126(10): e2020JC017139, doi: 10.1029/2020JC017139
    Yan Hengqian, Wang Huizan, Zhang Ren, et al. 2021b. The inconsistent pairs between in situ observations of near surface salinity and multiple remotely sensed salinity data. Earth and Space Science, 8(5): e2020EA001355, doi: 10.1029/2020EA001355
    Yang Yikai, Wang Dongxiao, Wang Qiang, et al. 2019. Eddy-induced transport of saline kuroshio water into the northern South China Sea. Journal of Geophysical Research: Oceans, 124(9): 6673–6687, doi: 10.1029/2018JC014847
    Zhou Lei, Chen Dake, Lei Xiaotu, et al. 2019. Progress and perspective on interactions between ocean and typhoon. Chinese Science Bulletin, 64(1): 60–72, doi: 10.1360/N972018-00668
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (143) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return