Turn off MathJax
Article Contents
Jing Ma, Wanyin Wang, Hermann Zeyen, Yimi Zhang, Zhongsheng Li, Tao He, Dingding Wang. Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2342-7
Citation: Jing Ma, Wanyin Wang, Hermann Zeyen, Yimi Zhang, Zhongsheng Li, Tao He, Dingding Wang. Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2342-7

Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas

doi: 10.1007/s13131-024-2342-7
Funds:  This research is supported by The National Key Research and Development Plan project “Research on Comprehensive Processing and Interpretation Methods of Aeronautical Geophysical Data and Soft ware Development” (No. 2017YFC0602202).
More Information
  • Corresponding author: E-mail: wwy7902@chd.edu.cn
  • Received Date: 2023-12-26
  • Accepted Date: 2024-02-05
  • Available Online: 2024-04-30
  • The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere. Therefore, investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important. This research utilizes recently enhanced geological–geophysical data, including topographic, geoid, rock layer thickness, variable rock layer density, and interface depth data. Employing the principles of lithospheric isostasy and heat conduction, we compute the laterally varying lithospheric thickness in the China seas and adjacent areas. From these results, two pivotal parameters for different types of oil and gas basins were statistically analyzed: the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness. A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins. This study unveils distinct variations in lithospheric thickness among basins, with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China. Notably, the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities: basins rich in oil and gas often exhibit greater thickness fluctuations. Additionally, in the offshore basins of China, a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness. This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins. Concurrently, sustained deep-seated heat influences sedimentary materials in basins, creating favorable conditions for oil and gas generation. The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins. These findings provide valuable guidance for future oil and gas exploration in the studied areas.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (72) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return