Citation: | Zewen Wu, Guojing Li, Yunkai He, Jintuan Zhang. Cold filament frontogenesis and frontolysis induced by thermal convection turbulence using large eddy simulation[J]. Acta Oceanologica Sinica, 2024, 43(9): 26-34. doi: 10.1007/s13131-024-2357-0 |
Barkan R, Molemaker M J, Srinivasan K, et al. 2019. The role of horizontal divergence in submesoscale frontogenesis. Journal of Physical Oceanography, 49(6): 1593–1618, doi: 10.1175/JPO-D-18-0162.1
|
Blumen W. 2000. Inertial oscillations and frontogenesis in a zero potential vorticity model. Journal of Physical Oceanography, 30(1): 31–39, doi: 10.1175/1520-0485(2000)030<0031:IOAFIA>2.0.CO;2
|
Bodner A S, Fox-Kemper B, Johnson L, et al. 2023. Modifying the mixed layer eddy parameterization to include frontogenesis arrest by boundary layer turbulence. Journal of Physical Oceanography, 53(1): 323–339, doi: 10.1175/JPO-D-21-0297.1
|
Bodner A S, Fox-Kemper B, Van Roekel L P, et al. 2020. A perturbation approach to understanding the effects of turbulence on frontogenesis. Journal of Fluid Mechanics, 883: A25
|
Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9): 2228–2250, doi: 10.1175/JPO3101.1
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008a. Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43, doi: 10.1175/2007JPO3671.1
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008b. Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes. Journal of Physical Oceanography, 38(1): 44–64, doi: 10.1175/2007JPO3672.1
|
Capet X, McWilliams J C, Molemaker M J, et al. 2008c. Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux. Journal of Physical Oceanography, 38(10): 2256–2268, doi: 10.1175/2008JPO3810.1
|
Crowe M N, Taylor J R. 2018. The evolution of a front in turbulent thermal wind balance. Part 1. Theory. Journal of Fluid Mechanics, 850: 179–211, doi: 10.1017/jfm.2018.448
|
Crowe M N, Taylor J R. 2019. The evolution of a front in turbulent thermal wind balance. Part 2. Numerical simulations. Journal of Fluid Mechanics, 880: 326–352, doi: 10.1017/jfm.2019.688
|
Dauhajre D P, McWilliams J C, Uchiyama Y. 2017. Submesoscale coherent structures on the continental shelf. Journal of Physical Oceanography, 47(12): 2949–2976, doi: 10.1175/JPO-D-16-0270.1
|
Deardorff J W. 1972. Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, 29(1): 91–115, doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2
|
Fox-Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: Theory and diagnosis. Journal of Physical Oceanography, 38(6): 1145–1165, doi: 10.1175/2007JPO3792.1
|
Gula J T, Molemaker M J, McWilliams J C. 2014. Submesoscale cold filaments in the Gulf Stream. Journal of Physical Oceanography, 44(10): 2617–2643, doi: 10.1175/JPO-D-14-0029.1
|
Hamlington P E, Van Roekel L P, Fox-Kemper B, et al. 2014. Langmuir-submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. Journal of Physical Oceanography, 44(9): 2249–2272, doi: 10.1175/JPO-D-13-0139.1
|
Haney S, Fox-Kemper B, Julien K, et al. 2015. Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. Journal of Physical Oceanography, 45(12): 3033–3056, doi: 10.1175/JPO-D-15-0044.1
|
Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14: 131–151, doi: 10.1146/annurev.fl.14.010182.001023
|
Hypolite D, Romero L, McWilliams J C, et al. 2021. Surface gravity wave effects on submesoscale currents in the open ocean. Journal of Physical Oceanography, 51(11): 3365–3383
|
Kaminski A K, Smyth W D. 2019. Stratified shear instability in a field of pre-existing turbulence. Journal of Fluid Mechanics, 862: 639–658, doi: 10.1017/jfm.2018.973
|
Lapeyre G, Klein P, Hua B L. 2006. Oceanic restratification forced by surface frontogenesis. Journal of Physical Oceanography, 36(8): 1577–1590, doi: 10.1175/JPO2923.1
|
Leibovich S. 1983. The form and dynamics of Langmuir circulations. Annual Review of Fluid Mechanics, 15: 391–427, doi: 10.1146/annurev.fl.15.010183.002135
|
Li Guojing, Wang Dongxiao, Dong Changming, et al. 2024. Frontogenesis and frontolysis of a cold filament driven by the cross-filament wind and wave fields simulated by a large eddy simulation. Advances in Atmospheric Sciences, 41(3): 509–528, doi: 10.1007/s00376-023-3037-2
|
McWilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 472(2189): 20160117
|
McWilliams J C. 2017. Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. Journal of Fluid Mechanics, 823: 391–432, doi: 10.1017/jfm.2017.294
|
McWilliams J C. 2018. Surface wave effects on submesoscale fronts and filaments. Journal of Fluid Mechanics, 843: 479–517, doi: 10.1017/jfm.2018.158
|
McWilliams J C. 2019. A survey of submesoscale currents. Geoscience Letters, 6(1): 3, doi: 10.1186/s40562-019-0133-3
|
McWilliams J C. 2021. Oceanic frontogenesis. Annual Review of Marine Science, 13: 227–253, doi: 10.1146/annurev-marine-032320-120725
|
McWilliams J C, Colas F, Molemaker M J. 2009. Cold filamentary intensification and oceanic surface convergence lines. Geophysical Research Letters, 36(18): L18602, doi: 10.1029/2009GL039402
|
McWilliams J C, Fox-Kemper B. 2013. Oceanic wave-balanced surface fronts and filaments. Journal of Fluid Mechanics, 730: 464–490, doi: 10.1017/jfm.2013.348
|
McWilliams J C, Gula J, Molemaker M J, et al. 2015. Filament frontogenesis by boundary layer turbulence. Journal of Physical Oceanography, 45(8): 1988–2005, doi: 10.1175/JPO-D-14-0211.1
|
McWilliams J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334: 1–30, doi: 10.1017/S0022112096004375
|
Moeng C H. 1984. A large-eddy-simulation model for the study of planetary boundary-layer turbulence. Journal of the Atmospheric Sciences, 46(13): 2052–2062
|
Pham H T, Sarkar S. 2018. Ageostrophic secondary circulation at a submesoscale front and the formation of gravity currents. Journal of Physical Oceanography, 48(10): 2507–2529, doi: 10.1175/JPO-D-17-0271.1
|
Shakespeare C J, Taylor J R. 2013. A generalized mathematical model of geostrophic adjustment and frontogenesis: Uniform potential vorticity. Journal of Fluid Mechanics, 736: 366–413, doi: 10.1017/jfm.2013.526
|
Skyllingstad E D, Denbo D W. 1995. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. Journal of Geophysical Research: Oceans, 100(C5): 8501–8522, doi: 10.1029/94JC03202
|
Skyllingstad E D, Samelson R M. 2012. Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: Unforced simulations. Journal of Physical Oceanography, 42(10): 1701–1716, doi: 10.1175/JPO-D-10-05016.1
|
Smith K M, Hamlington P E, Fox-Kemmper B. 2016. Effects of submesoscale turbulence on ocean tracers. Journal of Geophysical Research: Oceans, 121(1): 908–933, doi: 10.1002/2015JC011089
|
Sullivan P P, McWilliams J C. 2018. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. Journal of Fluid Mechanics, 837: 341–380, doi: 10.1017/jfm.2017.833
|
Sullivan P P, McWilliams J C. 2019. Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. Journal of Fluid Mechanics, 879: 512–553, doi: 10.1017/jfm.2019.655
|
Sullivan P P, McWilliams J C. 2024. Oceanic frontal turbulence. Journal of Physical Oceanography, 54(2): 333–358, doi: 10.1175/JPO-D-23-0033.1
|
Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. Journal of Fluid Mechanics, 593: 405–452, doi: 10.1017/S002211200700897X
|
Sullivan P P, McWilliams J C, Moeng C H. 1994. A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 71(3): 247–276, doi: 10.1007/BF00713741
|
Sullivan P P, Patton E G. 2011. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. Journal of the Atmospheric Sciences, 68(10): 2395–2413, doi: 10.1175/JAS-D-10-05010.1
|
Suzuki N, Fox-Kemper B. 2016. Understanding stokes forces in the wave-averaged equations. Journal of Geophysical Research: Oceans, 121(5): 3579–3596, doi: 10.1002/2015JC011566
|
Taylor J R, Thompson A F. 2023. Submesoscale dynamics in the upper ocean. Annual Review of Fluid Mechanics, 55: 103–127, doi: 10.1146/annurev-fluid-031422-095147
|
Verma V, Pham H T, Sarkar S. 2019. The submesoscale, the finescale and their interaction at a mixed layer front. Ocean Modelling, 140: 101400, doi: 10.1016/j.ocemod.2019.05.004
|
Wang Dailin. 2011. Large-eddy simulation of the diurnal cycle of oceanic boundary layer: sensitivity to domain size and spatial resolution. Journal of Geophysical Research: Oceans, 106(C7): 13959–13974
|
Yuan Jianguo, Liang Junhong. 2021. Wind-and wave-driven ocean surface boundary layer in a frontal zone: Roles of submesoscale eddies and Ekman-Stokes transport. Journal of Physical Oceanography, 51(8): 2655–2680
|
Zhang Zhiwei, Liu Yuelin, Qiu Bo, et al. 2023a. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport. Nature Communications, 14(1): 1335, doi: 10.1038/s41467-023-36991-2
|
Zhang Zhiwei, Zhang Xincheng, Qiu Bo, et al. 2021. Submesoscale currents in the subtropical upper ocean observed by long-term high-resolution mooring arrays. Journal of Physical Oceanography, 51(1): 187–206, doi: 10.1175/JPO-D-20-0100.1
|
Zhang Jinchao, Zhang Zhiwei, Qiu Bo. 2023b. Parameterizing submesoscale vertical buoyancy flux by simultaneously considering baroclinic instability and strain-induced frontogenesis. Geophysical Research Letters, 50(8): e2022GL102292, doi: 10.1029/2022GL102292
|