Volume 43 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
Xiaoqing Xu, Haidong Pan, Fei Teng, Zexun Wei. Accuracy assessment of global vertical displacement loading tide models for the equatorial and Indian Ocean[J]. Acta Oceanologica Sinica, 2024, 43(9): 11-25. doi: 10.1007/s13131-024-2358-z
Citation: Xiaoqing Xu, Haidong Pan, Fei Teng, Zexun Wei. Accuracy assessment of global vertical displacement loading tide models for the equatorial and Indian Ocean[J]. Acta Oceanologica Sinica, 2024, 43(9): 11-25. doi: 10.1007/s13131-024-2358-z

Accuracy assessment of global vertical displacement loading tide models for the equatorial and Indian Ocean

doi: 10.1007/s13131-024-2358-z
Funds:  The Shandong Provincial Natural Science Foundation under contract No. ZR2023QD045; the National Natural Science Foundation of China under contract Nos 42406026, 42076024 and 42106032.
More Information
  • Corresponding author: E-mail: weizx@fio.org.cn
  • Received Date: 2024-01-24
  • Accepted Date: 2024-06-02
  • Available Online: 2024-08-05
  • Publish Date: 2024-09-01
  • The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales, particularly in the vertical direction. Currently, most tide models incorporate the distribution of vertical displacement loading tides; however, their accuracy has not been assessed for the equatorial and Indian Ocean regions. Global Positioning System (GPS) observations provide high-precision data on sea-level changes, enabling the assessment of the accuracy and reliability of vertical displacement tide models. However, because the tidal period of the K2 constituent is almost identical to the orbital period of GPS constellations, the estimation of the K2 tidal constituent from GPS observations is not satisfactory. In this study, the principle of smoothness is employed to correct the systematic error in K2 estimates in GPS observations through quadratic fitting. Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean, the accuracy of eight major constituents from five global vertical displacement tide models (FES2014, EOT11a, GOT4.10c, GOT4.8, and NAO.99b) is evaluated for the equatorial and Indian Ocean. The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean, with root sum squares errors of 2.29 mm and 2.34 mm, respectively. Furthermore, a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.
  • loading
  • Aleem A A. 1967. Concepts of currents, tides and winds among medieval Arab geographers in the Indian Ocean. Deep-Sea Research and Oceanographic Abstracts, 14(4): 459–463, doi: 10.1016/0011-7471(67)90052-6
    Fang Guohong, Xu Xiaoqing, Wei Zexun, et al. 2013. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas. Science China Earth Sciences, 56(1): 63–70, doi: 10.1007/s11430-012-4518-9
    Iliffe J C, Ziebart M K, Turner J F, et al. 2013. Accuracy of vertical datum surfaces in coastal and offshore zones. Survey Review, 45(331): 254–262, doi: 10.1179/1752270613Y.0000000040
    Ito T, Okubo M, Sagiya T. 2009. High resolution mapping of Earth tide response based on GPS data in Japan. Journal of Geodynamics, 48(3–5): 253–259, doi: 10.1016/j.jog.2009.09.012
    Le Provost C L, Lyard F. 1993. Towards a detailed knowledge of the world ocean tides: the example of the Kerguelen Plateau. Geophysical Research Letters, 20(14): 1519–1522, doi: 10.1029/93GL01308
    Liu Jingdong, Zhang Wenjing, Liu Chunxiao, et al. 2019. An assessment of tidal prediction by global ocean tide models in the North Indian Ocean. Marine Science Bulletin (in Chinese), 38(2): 159–166, doi: 10.11840/j.issn.1001-6392.2019.02.005
    Lyard F H, Allain D J, Cancet M, et al. 2021. FES2014 global ocean tide atlas: design and performance. Ocean Science, 17(3): 615–649, doi: 10.5194/os-17-615-2021
    Maraldi C, Galton-Fenzi B, Lyard F, et al. 2007. Barotropic tides of the southern Indian Ocean and the Amery Ice Shelf Cavity. Geophysical Research Letters, 34(18): L18602, doi: 10.1029/2007GL030900
    Matsumoto K, Takanezawa T, Ooe M. 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimetry data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography, 56(5): 567–581, doi: 10.1023/A:1011157212596
    Munk W H, Cartwright D E. 1966. Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Sciences, 259(1105): 533–581, doi: 10.1098/rsta.1966.0024
    Pan Haidong, Xu Xiaoqing, Zhang Huayi, et al. 2023. A novel method to improve the estimation of ocean tide loading displacements for K1 and K2 components with GPS observations. Remote Sensing, 15(11): 2846, doi: 10.3390/rs15112846
    Pugh D. 1979. Sea levels at Aldabra Atoll, Mombasa and Mahé, western equatorial Indian Ocean, related to tides, meteorology and ocean circulation. Deep-Sea Research Part A. Oceanographic Research Papers, 26(3): 237–258, doi: 10.1016/0198-0149(79)90022-0
    Ray R D. 2013. Precise comparisons of bottom-pressure and altimetric ocean tides. Journal of Geophysical Research: Oceans, 118(9): 4570–4584, doi: 10.1002/jgrc.20336
    Savcenko R, Bosch W. 2012. EOT11A-empirical ocean tide model from multi-mission satellite altimetry. München: Deutsches Geodätisches Forschungsinstitut, 49
    Seifi F, Deng X L, Baltazar Andersen O. 2019. Assessment of the accuracy of recent empirical and assimilated tidal models for the Great Barrier Reef, Australia, using satellite and coastal data. Remote Sensing, 11(10): 1211, doi: 10.3390/rs11101211
    Shum C K, Woodworth P L, Andersen O B, et al. 1997. Accuracy assessment of recent ocean tide models. Journal of Geophysical Research: Oceans, 102(C11): 25173–25194, doi: 10.1029/97JC00445
    Visser P N A M, Sneeuw N, Reubelt T, et al. 2010. Space-borne gravimetric satellite constellations and ocean tides: aliasing effects. Geophysical Journal International, 181(2): 789–805, doi: 10.1111/j.1365-246X.2010.04557.x
    Wan Rongqiang, Wei Zexun, Gao Xiumin, et al. 2020. Numerical simulation of semi-diurnal tidal waves in the northern Indian ocean. Advances in Marine Science (in Chinese), 38(4): 562–573, doi: 10.3969/j.issn.1671-6647.2020.04.002
    Wei Guoguang, Chen Kejie, Ji Run. 2022. Improving estimates of ocean tide loading displacements with multi-GNSS: a case study of Hong Kong. GPS Solutions, 26(1): 25, doi: 10.1007/s10291-021-01212-0
    Wei Guoguang, Wang Qijie, Peng Wei. 2019. Accurate evaluation of vertical tidal displacement determined by GPS kinematic precise point positioning: a case study of Hong Kong. Sensors, 19(11): 2559, doi: 10.3390/s19112559
    Xu Xiaoqing, Wei Zexun, Teng Fei, et al. 2022. Vertical displacement loading tides and self-attraction and loading tides in the South China Sea and adjacent straits. Haiyang Xuebao (in Chinese), 44(7): 17–24, doi: 10.12284/hyxb2022112
    Yuan Linguo, Chao B F, Ding Xiaoli, et al. 2013. The tidal displacement field at Earth’s surface determined using global GPS observations. Journal of Geophysical Research: Solid Earth, 118(5): 2618–2632, doi: 10.1002/jgrb.50159
    Zetler B D. 1971. Radiational ocean tides along the coasts of the United States. Journal of Physical Oceanography, 1(1): 34–38, doi: 10.1175/1520-0485(1971)001<0032:ROTATC>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (135) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return