Experimental study of freak waves due to three-dimensional island terrain in random wave

Li Zou Aimin Wang Zhen Wang Yuguo Pei Xiaolong Liu

Li Zou, Aimin Wang, Zhen Wang, Yuguo Pei, Xiaolong Liu. Experimental study of freak waves due to three-dimensional island terrain in random wave[J]. Acta Oceanologica Sinica, 2019, 38(6): 92-99. doi: 10.1007/s13131-019-1390-x
Citation: Li Zou, Aimin Wang, Zhen Wang, Yuguo Pei, Xiaolong Liu. Experimental study of freak waves due to three-dimensional island terrain in random wave[J]. Acta Oceanologica Sinica, 2019, 38(6): 92-99. doi: 10.1007/s13131-019-1390-x

doi: 10.1007/s13131-019-1390-x

Experimental study of freak waves due to three-dimensional island terrain in random wave

Funds: The Qingdao National Laboratory for Marine Science and Technology under contract No. QNLM20160RP0402; the National Natural Science Foundation of China under contract Nos 51522902 and 51579040; the Fundamental Research Funds for the Central Universities under contract No. DUT17ZD233; the Ministry of Industry and Information Technology of China under contract No. [2016]22.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Multi-function integrated basin and model of the island.

    Figure  2.  The natural island located in the West Pacific.

    Figure  3.  Test terrain and arrangement of wave height gauges.

    Figure  4.  The distribution of freak waves about period and wave height.

    Figure  5.  The wave surface elevation of freak waves. a. $H_{\rm s} = 3.59\,{\rm cm}$, $T_{\rm s} = 0.80\,{\rm s}$, $\theta = {0^\circ }$; and b. $H_{\rm s} = 6.35\,{\rm cm}$, $T_{\rm s} = 1.14\,{\rm s}$, $\theta = {0^\circ }$.

    Figure  6.  The various surface of different type freak waves in our experiment.

    Figure  7.  The relationships between freak factor ${H_{\rm{m}}}/{H_{\rm{s}}}$ and skewness (a), and Hfr and skewness (b).

    Figure  8.  The relationship between freak factor ${H_{\rm{m}}}/{H_{\rm{s}}}$, skewness and kurtosis. a. Freak factor ${H_{\rm{m}}}/{H_{\rm{s}}}$ and kurtosis, and b. skewness and kurtosis. The red solid () represents cases with freak waves, the black solid () cases without freak waves.

    Figure  9.  The variation of significant wave height along the terrain (solid curve). a. ${H_{\rm{s}}} = 6.35$ cm, ${T_{\rm{s}}} = 0.87$ s, $\theta = {22.5^\circ }$; b. ${H_{\rm{s}}} = 6.35$ cm, ${T_{\rm{s}}} = 0.87$ s, $\theta = {0^\circ }$; c. ${H_{\rm{s}}} = 3.59$ cm, ${T_{\rm{s}}} = 0.8$ s, $\theta = {0^\circ }$; and d. ${H_{\rm{s}}} = 3.59$ cm, ${T_{\rm{s}}} = 0.8$ s, $\theta = - {22.5^\circ }$.

    Figure  10.  The variation of kurtosis along the terrain (solid curve). a. ${H_{\rm{s}}} = 6.35$ cm, ${T_{\rm{s}}} = 0.87$ s, $\theta = {22.5^\circ }$; b. ${H_{\rm{s}}} = 6.35$ cm, ${T_{\rm{s}}} = 0.87$ s, $\theta = {0^\circ }$; c. ${H_{\rm{s}}} = 3.59$ cm, ${T_{\rm{s}}} = 0.8$ s, $\theta = {0^\circ }$; and d. ${H_{\rm{s}}} = 3.59$ cm, ${T_{\rm{s}}} = 0.8$ s, $\theta = - {22.5^\circ }$.

    Figure  11.  The variation of freak factor ${H_{\rm{m}}}/{H_{\rm{s}}}$ (solid line), kurtosis (dot line) along the wave evolution. a. ${H_{\rm{s}}} = 6.35$ cm at Probe G, $\theta = {0^ \circ }$; and b. ${H_{\rm{s}}} = 3.59$ cm at Probe H, $\theta = {0^ \circ }$.

    Figure  12.  The times variation of freak wave occurrence along the terrain (solid curve).

    Table  1.   Working conditions of irregular wave tests for 39 cases in terms of significant wave height ${H_{\rm{s}}}$and significant period ${T_{\rm{s}}}$

    CaseWave
    directions $(\theta )$
    ${H_{\rm{s}}}$/cm${T_{\rm{s}}}$/s
    A1${22.5^\circ }$1.610.73
    A23.590.73
    A36.350.87
    A48.050.87
    A5${0^ \circ }$1.610.67, 0.73, 0.8, 0.87, 0.93, 1, 1.07, 1.2
    A63.590.67, 0.73, 0.8, 0.87, 0.93, 1, 1.07, 1.14
    A74.820.73
    A86.350.8, 0.87, 0.93, 1, 1.07, 1.14, 1.21
    A98.050.8, 0.87, 0.93, 1, 1.07, 1.14, 1.21
    A10 $ - {22.5^\circ }$8.371.05
    A11 1.710.65
    A12 3.590.80
    A13 7.080.91
    下载: 导出CSV
  • Cherneva Z, Soares C G. 2014. Time-frequency analysis of the sea state with the Andrea freak wave. Nat Hazards and Earth System Sciences, 14(12): 3143–3150. doi: 10.5194/nhess-14-3143-2014
    Cui Cheng, Zhang Ningchuan, Kang Haigui, et al. 2013. An experimental and numerical study of the freak wave speed. Acta Oceanologica Sinica, 32(5): 51–56. doi: 10.1007/s13131-013-0313-5
    Cui Cheng, Zhang Ningchuan, Yu Yuxiu, et al. 2012. Numerical study on the effects of uneven bottom topography on freak waves. Ocean Engineering, 54: 132–141. doi: 10.1016/j.oceaneng.2012.06.021
    Dean R G. 1990. Freak waves: a possible explanation. In: Tørum A, Gudmestad O T, eds. Water Wave Kinematics. Dordrecht: Springer, 609–612
    Deng Yanfei, Yang Jianmin, Tian Xinliang, et al. 2016. An experimental study on deterministic freak waves: generation, propagation and local energy. Ocean Engineering, 118: 83–92. doi: 10.1016/j.oceaneng.2016.02.025
    Didenkulova I. 2011. Shapes of freak waves in the coastal zone of the Baltic sea (Tallinn bay). Boreal Environment Research, 16(SA): 138–148
    Dysthe K, Krogstad H E, Müller P. 2008. Oceanic rogue waves. Annual Review of Fluid Mechanics, 40(1): 287–310. doi: 10.1146/annurev.fluid.40.111406.102203
    Glejin J, Kumar V S, Nair T M B, et al. 2014. Freak waves off Ratnagiri, west coast of India. Indian Journal of Geo-marine Sciences, 43(7): 1339–1342
    Goda Y. 1999. A comparative review on the functional forms of directional wave spectrum. Coastal Engineering J, 41(1): 1–20. doi: 10.1142/S0578563499000024
    Gramstad O, Zeng H, Trulsen K, et al. 2013. Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Physics of Fluids, 25(12): 122103. doi: 10.1063/1.4847035
    Haver S. 2004. A possible freak wave event measured at the Draupner jacket January 1 1995. In: Olagnon M, Prevosto M, eds. Rogue Waves 2004. Brest, France: Ifremer, 1–8
    Kharif C, Pelinovsky E, Slunyaev A. 2009. Rogue Waves in the Ocean. Berlin, Heidelberg: Springer, 1–30
    Lawton G. 2001. Monsters of the deep. New Scientist, 170(2297): 28–32
    Li Jinxuan, Li Pengfei, Liu Shuxue. 2013. Observations of freak waves in random wave field in 2D experimental wave flume. China Ocean Engineering, 27(5): 659–670. doi: 10.1007/s13344-013-0055-3
    Li Jinxuan, Yang Jiqing, Liu Shuxue, et al. 2015. Wave groupiness analysis of the process of 2D freak wave generation in random wave trains. Ocean Engineering, 104: 480–488. doi: 10.1016/j.oceaneng.2015.05.034
    Liu Zanqiang, Zhang Ningchuan, Yu Yuxiu. 2011. An efficient focusing model for generation of freak waves. Acta Oceanologica Sinica, 30(6): 19–26. doi: 10.1007/s13131-011-0157-9
    Lu Wenyue, Yang Jianmin, Tao Longbin. 2016. Numerical study of the energy structure of super rogue waves. Ocean Engineering, 113: 295–307. doi: 10.1016/j.oceaneng.2015.11.006
    Mori N, Liu P C, Yasuda T. 2002. Analysis of freak wave measurements in the sea of Japan. Ocean Engineering, 29(11): 1399–1414. doi: 10.1016/S0029-8018(01)00073-7
    Onorato M, Osborne A R, Serio M, et al. 2006. Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. European Journal of Mechanics-B/Fluids, 25(5): 586–601. doi: 10.1016/j.euromechflu.2006.01.002
    Pei Yuguo, Zhang Ningchuan, Zhang Yunqiu. 2007. Efficient generation of freak waves in laboratory. China Ocean Engineering, 21(3): 515–523
    Qin Hao, Tang Wenyong, Hu Zhe, et al. 2017. Structural response of deck structures on the green water event caused by freak waves. Journal of Fluids and Structures, 68: 322–338. doi: 10.1016/j.jfluidstructs.2016.11.009
    Sergeeva A, Pelinovsky E, Talipova T. 2011. Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Natural Hazards and Earth System Sciences, 11(2): 323–330. doi: 10.5194/nhess-11-323-2011
    Shemer L, Sergeeva A. 2009. An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. Journal of Geophysical Research: Oceans, 114(C1): C01015
    Slunyaev A, Didenkulova I, Pelinovsky E. 2011. Rogue waters. Contemporary Physics, 52(6): 571–590. doi: 10.1080/00107514.2011.613256
    Soares C G, Cherneva Z, Antão E M. 2003. Characteristics of abnormal waves in North Sea storm sea states. Applied Ocean Research, 25(6): 337–344. doi: 10.1016/j.apor.2004.02.005
    Tayfun M A, Fedele F. 2007. Wave-height distributions and nonlinear effects. Ocean Engineering, 34(11–12): 1631–1649. doi: 10.1016/j.oceaneng.2006.11.006
    Toffoli A, Bitner-Gregersen E, Onorato M, et al. 2008. Wave crest and trough distributions in a broad-banded directional wave field. Ocean Engineering, 35(17–18): 1784–1792. doi: 10.1016/j.oceaneng.2008.08.010
    Toffoli A, Cavaleri L, Babanin A V, et al. 2011. Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current. Natural Hazards and Earth System Sciences, 11(3): 895–903. doi: 10.5194/nhess-11-895-2011
    Toffoli A, Waseda T, Houtani H, et al. 2015. Rogue waves in opposing currents: an experimental study on deterministic and stochastic wave trains. Journal of Fluid Mechanics, 769: 277–297. doi: 10.1017/jfm.2015.132
    Trulsen K, Zeng H, Gramstad O. 2012. Laboratory evidence of freak waves provoked by non-uniform bathymetry. Physics of Fluids, 24(9): 097101. doi: 10.1063/1.4748346
    Veltcheva A D, Soares C G. 2012. Analysis of abnormal wave groups in Hurricane Camille by the Hilbert Huang Transform method. Ocean Engineering, 42: 102–111. doi: 10.1016/j.oceaneng.2011.12.013
    Waseda T, Kinoshita T, Tamura H. 2009. Evolution of a random directional wave and freak wave occurrence. Journal of Physical Oceanography, 39(3): 621–639. doi: 10.1175/2008JPO4031.1
    Zeng H, Trulsen K. 2012. Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Natural Hazards and Earth System Sciences, 12(3): 631–638. doi: 10.5194/nhess-12-631-2012
    Zhang Yunqiu, Zhang Ningchuan, Hu Jinpeng. 2007. Numerical simulation and mechanism analysis of freak waves. Acta Oceanologica Sinica, 26(5): 116–124
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  92
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-04
  • 录用日期:  2018-03-26
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回