Diversity of protease-producing bacteria in the Bohai Bay sediment and their extracellular enzymatic properties

Zhenpeng Zhang Chaoya Wu Shuai Shao Wei Liu En-Tao Wang Yan Li

Zhenpeng Zhang, Chaoya Wu, Shuai Shao, Wei Liu, En-Tao Wang, Yan Li. Diversity of protease-producing bacteria in the Bohai Bay sediment and their extracellular enzymatic properties[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-020-1589-x
Citation: Zhenpeng Zhang, Chaoya Wu, Shuai Shao, Wei Liu, En-Tao Wang, Yan Li. Diversity of protease-producing bacteria in the Bohai Bay sediment and their extracellular enzymatic properties[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-020-1589-x

doi: 10.1007/s13131-020-1589-x

Diversity of protease-producing bacteria in the Bohai Bay sediment and their extracellular enzymatic properties

Funds: The National Natural Science Foundation of China under contract Nos 31600009 and 31800099; the Key Research and Development Program of Hebei Province under contract No. 19273802D; the STS Program of Chinese Academy of Sciences and Fujian Province under contract No. 2017T3019; the Yantai Science and Technology Project under contract No. 2018ZHGY074; the Joint Fund of Jilin Province and Chinese Academy of Sciences for High-tech Industrialization under contract No. 2019SYHZ0036; En-Tao Wang was supported by the projects under contract Nos SIP 20150597 and 20160883 authorized by IPN, Mexico.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of the Bohai Bay in the Bohai Sea of China showing the sampling sites (●). The map was created using DIVA-GIS software (http//www.diva-gis.org), and the sampling sites were added according to GPS records.

    Figure  2.  Phylogenetic tree of the protease-producing bacteria isolated from the Bohai Bay based on 16S rRNA gene sequences. Taxa and GenBank accession numbers in boldface were generated in this study. The tree was constructed by neighbor-joining method using MEGA version 6.0. Only bootstrap values greater than 50% are presented in the nodes. The scale bar represents 2% nucleotide substitution.

    Table  1.   Characteristics of the sampling stations and the distribution of different genera in these stations

    PropertiesStation
    BH07BH12BH17BH18BH20BH22CFD39
    GPS38.35°N, 118.75°E38.55°N, 117.95°E38.55°N, 118.95°E38.75°N, 118.95°E38.75°N, 118.55°E38.75°N, 118.15°E39.07°N, 118.53°E
    Characteristics for sediment samples
    Depth/m16.149.6622.6525.5723.7817.2712.19
    Temperature/°C24.9727.1120.3619.3223.2725.4726.14
    pH8.118.087.917.908.018.188.08
    DO4.024.172.202.283.505.114.86
    Sal30.3030.0230.3130.4530.5130.2030.63
    OrgC/%0.420.510.550.600.540.570.87
    OrgN/%0.060.080.090.080.090.100.11
    C/N1)7.006.386.117.56.005.707.91
    Genera distribution
    ProteobacteriaPseudoalteromonas381561678
    Shewanella31
    Marinobacter13
    Sulfitobacter44
    Celeribacter111
    Albirhodobacter11
    FirmicutesBacillus711
    Halobacillus111
    Fictibacillus1
    ActinobacteriaMicrococcus11
    Citricoccus1
    Brachybacterium1
    BacteroidetesArenibacter 2
    Salegentibacter222
    Total strain number (109)
    Diversity index
    Shannon–Wiener (H′)1.581.221.661.010.340.940.64
    Simpson (D)0.720.610.710.610.200.480.34
    Pielou (J)0.810.760.760.920.500.680.58
    Note: 1) C/N is the abbreviation of OrgC/OrgN.
    下载: 导出CSV

    Table  2.   Summary of the inhibition test and the extracellular enzyme production analyses of the tested strains isolated from the Bohai Bay

    GeneraStrainInhibition ratio1) (I)/%H/C ratio2)Nitrate
    PMSFO-PE-64P-ACaseinGelatinElastinAmylaseCellulaseAlginaseTween 80
    Pseudoalteromonas7000443.6422.87001.773.001.270000
    7000660.9703.3502.782.921.404.002.183.266.31+
    7003280.7546.83001.543.1000001.70
    7003816.890002.334.5000001.61
    7003943.830002.504.71003.681.113.27
    7004848.4116.53002.785.0000004.52+
    7005171.3545.1902.993.252.671.860002.59
    7005376.4329.47002.255.000001.495.40
    7005680.050002.784.140003.600
    7030546.370003.421.402.211.5901.203.17
    7030649.1834.794.1102.873.221.581.761.081.251.51+
    7030781.1044.84002.942.561.923.2301.333.36
    7030899.2348.205.8002.752.871.582.0701.163.83+
    7032052.135.81002.311.461.551.491.221.221.51
    7032539.576.21003.141.271.701.9801.442.99+
    7032681.4234.55003.191.142.102.1901.961.70
    7033329.636.34002.621.201.551.6401.202.79
    7033990.1331.284.484.482.0001.501.614.111.233.46+
    7034285.923.20002.181.451.580000
    7034470.0453.847.0402.381.421.251.3401.282.96
    7035451.0420.354.2503.432.851.731.2601.321.33
    7035668.4010.6007.723.181.572.091.7501.311.19
    7035977.0442.9503.743.421.801.601.8301.862.64+
    7036150.746.173.6003.002.361.771.3502.122.83
    7036592.2927.77003.213.292.501.3402.180+
    7036957.3734.39002.442.081.501.761.412.371.18
    7037395.1944.7903.123.293.171.502.971.123.362.73+
    7037476.8237.19003.132.271.362.3606.552.78
    7037561.0802.2302.932.882.112.8904.630
    7037615.395.92003.002.751.33002.160
    7037942.4651.173.7002.802.641.801.2703.292.79
    7038091.5251.241.284.572.823.151.6401.592.100
    7041399.1832.76002.291.271.331.4002.622.71
    Bacillus7001363.698.67001.803.670008.740
    700359.420001.406.5000000+
    7003719.803.89002.147.000002.962.04
    7004992.5844.7403.094.805.421.320000
    7005531.9818.387.457.631.363.8600000
    Fictibacillus7001443.211.84001.675.000002.520
    Micrococcus7002568.6024.307.8304.005.1700000
    7002761.2617.129.0103.804.140001.880
    Halobacillus7007438.710003.573.332.29002.950
    7007563.5715.94002.004.00001.3700
    Salegentibacter7030435.376.197.2404.601.295.00002.630+
    7039084.240008.337.835.40003.410+
    7040042.390005.004.603.57002.000
    7040146.268.49006.756.005.00002.620+
    7041620.221.31006.003.005.50002.110+
    Marinobacter7043441.7037.85002.09003.5405.272.40+
    7043538.7435.58001.283.1903.8207.842.40+
    Note: 1) Inhibition ratio (I, %) was calculated by using control activity minus the relative activity of a sample with an inhibitor and the activity of a sample without any inhibitor was taken as a control. 2) H/C ratio is the ratio of the hydrolytic zone diameter versus the colony diameter of a colony on the plate. PMSF, phenylmethylsulfonyl fluoride; OP, 1, 10-phenanthroline; P-A, pepstatin A.
    下载: 导出CSV
  • Akagawa-Matsushita M, Matsuo M, Koga Y, et al. 1993. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. International Journal of Systematic and Bacteriology, 43(2): 400–400. doi: 10.1099/00207713-43-2-400
    Alasalvar C, Taylor K D A, Zubcov E, et al. 2002. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chemistry, 79(2): 145–150. doi: 10.1016/S0308-8146(02)00122-X
    Anastasakis K, Ross A B, Jones J M. 2011. Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel, 90(2): 598–607. doi: 10.1016/j.fuel.2010.09.023
    Bowman J P. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Marine Drugs, 5(4): 220–241. doi: 10.3390/md504220
    Chen Xiulan, Zhang Yuzhong, Gao Peiji, et al. 2003. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Marine Biology, 143(5): 989–993. doi: 10.1007/s00227-003-1128-2
    Chi W J, Park J S, Kang D K, et al. 2014. Production and characterization of a novel thermostable extracellular agarase from Pseudoalteromonas hodoensis newly isolated from the West Sea of South Korea. Applied Biochemistry and Biotechnology, 173(7): 1703–1716. doi: 10.1007/s12010-014-0958-3
    Dang Hongyue, Zhu Hu, Wang Jing, et al. 2009. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World Journal of Microbiology and Biotechnology, 25(1): 71–79. doi: 10.1007/s11274-008-9865-5
    Demirbas A, DemiRbas M F. 2011. Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1): 163–170. doi: 10.1016/j.enconman.2010.06.055
    Engel A S, Porter M L, Stern L A, et al. 2004. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiology Ecology, 51(1): 31–53. doi: 10.1016/j.femsec.2004.07.004
    Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4): 783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x
    Feng Huan, Jiang Hongyou, Gao Wensheng, et al. 2011. Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. Journal of Environmental Management, 92(4): 1185–1197. doi: 10.1016/j.jenvman.2010.11.020
    Fu Yanzhao, Xu Shiguo, Liu Jianwei. 2016. Temporal-spatial variations and developing trends of Chlorophyll-a in the Bohai Sea, China. Estuarine, Coastal and Shelf Science, 173: 49–56. doi: 10.1016/j.ecss.2016.02.016
    Gamal R F, El-Tayeb T S, Raffat E I, et al. 2016. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. International Journal of Biological Macromolecules, 91: 598–608. doi: 10.1016/j.ijbiomac.2016.06.008
    Hansen G H, Sørheim R. 1991. Improved method for phenotypical characterization of marine bacteria. Journal of Microbiological Methods, 13(3): 231–241. doi: 10.1016/0167-7012(91)90049-V
    He Peiqing, Li Li, Liu Jihua, et al. 2016. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea. FEMS Microbiology Letters, 363(10): fnw086. doi: 10.1093/femsle/fnw086
    Hill T C J, Walsh K A, Harris J A, et al. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology, 43(1): 1–11. doi: 10.1111/j.1574-6941.2003.tb01040.x
    Hu Ningjing, Shi Xuefa, Liu Jihua, et al. 2010. Concentrations and possible sources of PAHs in sediments from Bohai Bay and adjacent shelf. Environmental Earth Sciences, 60(8): 1771–1782. doi: 10.1007/s12665-009-0313-0
    Hunter E M, Mills H J, Kostka J E. 2006. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Applied and Environmental Microbiology, 72(9): 5689–5701. doi: 10.1128/AEM.03007-05
    Itoh T. 1990. Cellulose synthesizing complexes in some giant marine algae. Journal of Cell Science, 95(2): 309–319
    Kitamikado M, Yamaguchi K, Tseng C H, et al. 1990. Method designed to detect alginate-degrading bacteria. Applied and Environmental Microbiology, 56(9): 2939–2940. doi: 10.1128/AEM.56.9.2939-2940.1990
    Li Yan, Wu Chaoya, Zhou Mingyang, et al. 2017. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Frontiers in Microbiology, 8: 405. doi: 10.3389/fmicb.2017.00405
    Mondol M M A M, Shin H J, Islam M T. 2013. Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity. Marine Drugs, 11(8): 2846–2872. doi: 10.3390/md11082846
    Mu Di, Yuan Dekui, Feng Huan, et al. 2017. Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China. Marine Pollution Bulletin, 114(2): 705–714. doi: 10.1016/j.marpolbul.2016.10.056
    Olivera N L, Sequeiros C, Nievas M L. 2007. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 11(3): 517–526. doi: 10.1007/s00792-007-0064-3
    Pujalte M J, Sitjà-Bobadilla A, Macián M C, et al. 2007. Occurrence and virulence of Pseudoalteromonas spp. in cultured gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Molecular and phenotypic characterisation of P. undina strain U58. Aquaculture, 271(1–4): 47–53. doi: 10.1016/j.aquaculture.2007.06.015
    Putz M, Schleusner P, Rütting T, et al. 2018. Relative abundance of denitrifying and DNRA bacteria and their activity determine nitrogen retention or loss in agricultural soil. Soil Biology and Biochemistry, 123: 97–104. doi: 10.1016/j.soilbio.2018.05.006
    R Core Team. 2014. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2013
    Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4): 406–425. doi: 10.1093/oxfordjournals.molbev.a040454
    Sanger F, Nicklen S, Coulson A R. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12): 5463–5467. doi: 10.1073/pnas.74.12.5463
    Sfanos K, Harmody D, Dang P, et al. 2005. A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Systematic and Applied Microbiology, 28(3): 242–264. doi: 10.1016/j.syapm.2004.12.002
    Smant G, Stokkermans J P W G, Yan Yitang, et al. 1998. Endogenous cellulases in animals: Isolation of β-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proceedings of the National Academy of Sciences of the United States of America, 95(9): 4906–4911. doi: 10.1073/pnas.95.9.4906
    Sun Jinsheng, Guo Fei, Geng Xuyun, et al. 2011. Seasonal changes and diversity of bacteria in Bohai Bay by RFLP analysis of PCR-amplified 16S rDNA gene fragments. World Journal of Microbiology and Biotechnology, 27(2): 275–284. doi: 10.1007/s11274-010-0456-x
    Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729. doi: 10.1093/molbev/mst197
    Thamdrup B, Dalsgaard T. 2008. Nitrogen cycling in sediments. In: Kirchman D L, ed. Microbial Ecology of the Oceans. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc., 527–568
    Tsekos I. 1999. The sites of cellulose synthesis in algae: Diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology, 35(4): 635–655. doi: 10.1046/j.1529-8817.1999.3540635.x
    Viola R, Nyvall P, Pedersén M. 2001. The unique features of starch metabolism in red algae. Proceedings of the Royal Society B: Biological Sciences, 268(1474): 1417–1422. doi: 10.1098/rspb.2001.1644
    Yadav A N, Sachan S G, Verma P, et al. 2015. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. Journal of Basic Microbiology, 56(3): 294–307. doi: 10.1002/jobm.201500230
    Zhang Xiying, Han Xiaoxu, Chen Xulan, et al. 2015. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Frontiers in Microbiology, 6: 1021. doi: 10.3389/fmicb.2015.01021
    Zhang Quansheng, Tang Xuexi, Cong Yizhou, et al. 2007. Breeding of an elite Laminaria variety 90–1 through inter-specific gametophyte crossing. Journal of Applied Phycology, 19(4): 303–311. doi: 10.1007/s10811-006-9137-4
    Zhao Huilin, Chen Xiulan, Xie Binbin, et al. 2012. Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6–2: Cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. Journal of Biological and Chemistry, 287(47): 39710–39720. doi: 10.1074/jbc.M112.405076
    Zhou Mingyang, Chen Xiulan, Zhao Huilin, et al. 2009. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microbial Ecology, 58(3): 582–590. doi: 10.1007/s00248-009-9506-z
    Zhou Mingyang, Wang Guanglong, Li Dan, et al. 2013. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica. PLoS One, 8(11): e79668. doi: 10.1371/journal.pone.0079668
  • 加载中
计量
  • 文章访问数:  759
  • HTML全文浏览量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-02
  • 录用日期:  2019-06-24

目录

    /

    返回文章
    返回