Sea surface temperature retrieval based on simulated microwave polarimetric measurements of a one-dimensionalsynthetic aperture microwave radiometer

Mengyan Feng Weihua Ai Wen Lu Chengju Shan Shuo Ma Guanyu Chen

Mengyan Feng, Weihua Ai, Wen Lu, Chengju Shan, Shuo Ma, Guanyu Chen. Sea surface temperature retrieval based on simulated microwave polarimetric measurements of a one-dimensionalsynthetic aperture microwave radiometer[J]. Acta Oceanologica Sinica, 2021, 40(3): 122-133. doi: 10.1007/s13131-021-1712-7
Citation: Mengyan Feng, Weihua Ai, Wen Lu, Chengju Shan, Shuo Ma, Guanyu Chen. Sea surface temperature retrieval based on simulated microwave polarimetric measurements of a one-dimensionalsynthetic aperture microwave radiometer[J]. Acta Oceanologica Sinica, 2021, 40(3): 122-133. doi: 10.1007/s13131-021-1712-7

doi: 10.1007/s13131-021-1712-7

Sea surface temperature retrieval based on simulated microwave polarimetric measurements of a one-dimensionalsynthetic aperture microwave radiometer

Funds: The National Natural Science Foundation of China under contract Nos 41475019 and 41705007.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The concept of one-dimensional synthetic aperture microwave radiometer.

    Figure  2.  The schematic diagram of the incidence angle of a one-dimensional synthetic aperture radiometer.

    Figure  3.  Distribution histogram of environment parameters. a. Sea surface temperature, b. wind direction, c. wind speed, d. total column cloud water vapor content, and e. total column cloud liquid water content.

    Figure  4.  Diagram of the process to retrieve sea surface temperature.

    Figure  5.  Schematic diagram of the BP neural network.

    Figure  6.  The relationship between sensitivity of brightness temperature to SST and incidence angle.

    Figure  7.  The relationship between sensitivity of brightness temperature to SST and SST at $\theta \!=\! {30^ \circ }$.

    Figure  9.  Relationships between the retrieval errors and sea surface temperature when the added noise is 0.50 K and $\theta \!=\! 30^\circ$.

    Figure  10.  Scatterplots of retrieval sea surface temperature and true sea surface temperature for Gaussian error of 0.5 K and $\theta \!= \!30^\circ$.

    Table  1.   Parameters of the one-dimensional synthetic aperture radiometer

    ParameterValues
    Frequency/GHz6.9
    Bandwidth/MHz200
    Polarization modesvertical and horizontal polarization
    Integral time/s0.5
    Number of antenna elements55
    Minimum spacing between antenna elements0.73λ
    Angular range of the field of view–43° to 43°
    Angular resolution0.43°
    Antenna element positions[0 1 2 3 7 11 12 14 21 24 26 28 38 43 58 59 60 65 68 70 73 75 76 78 83 86 88 93 101 103 105 112 118
    121 122 123 132 133 134 137 147 148 153 156 164 166 172 173 174 175 178 180 181 182 183]
    Parabolic size12 m×10 m
    Spatial resolution at nadir/km5
    Range of incidence angle θ with vertical observation–51° to 51°
    下载: 导出CSV

    Table  2.   Geophysical parameter values for the background field used in the sensitivity analysis

    SceneSTS/KW/(m·s–1 ) φ/(°)V/mmL/mm
    Scene235273.15–313.151530300.1
    下载: 导出CSV

    Table  3.   Mean RMS errors, where the top values are the training set and the bottom values are the test set

    Noise/KMean RMS error/K
    BPRFRE1RE2
    0.250.300.76 0.60 0.61
    0.30 0.78 0.60 0.61
    0.50 0.42 0.900.68 0.69
    0.42 0.92 0.68 0.68
    0.75 0.50 1.04 0.74 0.75
    0.51 1.07 0.74 0.75
    下载: 导出CSV

    Table  4.   The average mean biases, where the top values are the training set and the bottom values are the test set

    Noise/KMean bias/K
    BPRFRE1RE2
    0.25−1.0×10−4−6.0×10−42.1×10−4−1.5×10−4
    −1.1×10–4−0.001−1.2×10−3−1.3×10−3
    0.50−3.7×10−4−6.0×10−4−3.2×10−57.1×10−5
    −5.7×10−4−4.7×10−4−7.7×10−4−8.9×10−4
    0.75−0.005−5.4×10−4−1.2×10−5−2.6×10−5
    −0.005−6.4×10−46.6×10−4−6.6×10−4
    下载: 导出CSV

    Table  5.   SST interval and sample size for each interval in the training set and the corresponding RMS error and mean bias

    SST/KNRMS error and mean bias/K
    BPRFRE1RE2
    271.15–274.8458 4590.29/−0.030.67/−0.320.77/0.470.72/0.50
    274.85–278.5329 0870.28/0.020.74/−0.090.49/−0.050.48/−0.08
    278.54–282.2128 5180.28/0.010.81/−0.050.70/−0.500.72/−0.53
    282.22–285.9024 1940.29/−0.040.89/−0.060.84/−0.710.86/−0.71
    285.91–289.5925 8500.32/−0.090.99/−0.130.83/−0.670.87/−0.69
    289.60–293.2731 8020.32/−0.031.06/−0.150.65/−0.400.70/−0.43
    293.28–296.9644 6250.33/0.051.08/−0.090.49/−0.050.55/−0.06
    296.97–300.6570 2490.36/0.100.97/−0.010.59/0.320.64/0.33
    300.66–304.3352 6580.37/0.0011.05/0.740.66/0.290.71/0.32
    304.34–308.02154 0.36/0.204.09/3.861.01/0.791.13/0.91
    All365 6240.38/−0.010.93/0.0040.67/0.000.69/0.00
    Note: The RMS error and the mean bias are separated by “/”.
    下载: 导出CSV

    Table  6.   SST interval and sample size for each interval in the test set and the corresponding RMS error and mean bias

    SST/KNRMS error and mean bias/K
    BP RF RE1 RE2
    271.15–274.8458 0010.29/−0.040.69/−0.340.78/0.470.72/0.50
    274.85–278.5329 0910.28/0.030.76/−0.090.49/−0.060.49/−0.08
    278.54–282.2128 6620.28/0.010.85/−0.070.70/−0.500.72/−0.53
    282.22–285.9024 1390.29/−0.040.92/−0.060.84/−0.700.85/−0.71
    285.91–289.5925 9930.32/−0.091.03/−0.150.82/−0.670.86/−0.69
    289.60–293.2731 7390.33/−0.031.11/−0.160.66/−0.410.71/−0.44
    293.28–296.9644 5340.34/0.051.11/−0.090.50/−0.060.56/−0.07
    296.97–300.6570 5950.36/0.131.01/0.000.59/0.330.65/0.34
    300.66–304.3352 7030.37/0.001.07/0.760.70/0.300.72/0.33
    304.34–308.02167 0.43/0.164.03/3.760.98/0.691.07/0.78
    All365 6240.39/−0.010.97/0.0040.67/0.000.69/−0.001
    Note: The RMS error and the mean bias are separated by “/”.
    下载: 导出CSV
  • [1] Aires F, Prigent C, Rossow W B, et al. 2001. A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. Journal of Geophysical Research, 106(D4): 14887–14907
    [2] Alsweiss S O, Jelenak Z, Chang P S. 2017. Remote sensing of sea surface temperature using AMSR-2 measurements. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 10(9): 3948–3954
    [3] Bettenhausen M H, Smith C K, Bevilacqua R M, et al. 2006. A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Transactions on Geoscience and Remote Sensing, 44(3): 597–610. doi: 10.1109/TGRS.2005.862504
    [4] Bobylev L P, Zabolotskikh E V, Mitnik L M, et al. 2010. Atmospheric water vapor and cloud liquid water retrieval over the Arctic ocean using satellite passive microwave sensing. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 283–294. doi: 10.1109/TGRS.2009.2028018
    [5] Brown S T, Ruf C S, Lyzenga D R. 2006. An emissivity-based wind vector retrieval algorithm for the WindSat polarimetric radiometer. IEEE Transactions on Geoscience and Remote Sensing, 44(3): 611–621. doi: 10.1109/TGRS.2005.859351
    [6] Camps A, Park H, Bandeiras J, et al. 2016. Microwave imaging radiometers by aperture synthesis—Performance simulator (Part 1): Radiative transfer module. Journal of Imaging, 2(2): 17. doi: 10.3390/jimaging2020017
    [7] Chelton D B, Wentz F J. 2005. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bulletin of the American Meteorological Society, 86(8): 1097–1116. doi: 10.1175/BAMS-86-8-1097
    [8] Corbella I, Duffo N, Vall-Llossera M, et al. 2004. The visibility function in interferometric aperture synthesis radiometry. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1677–1682. doi: 10.1109/TGRS.2004.830641
    [9] Emanuel A K. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665–669. doi: 10.1038/44326
    [10] Goodberlet M A, Swift C T, Wilkerson J C. 1990. Ocean surface wind speed measurements of the special sensor microwave/imager (SSM/I). IEEE Transactions on Geoscience and Remote Sensing, 28(5): 823–828. doi: 10.1109/36.58969
    [11] Hollinger J P. 1971. Passive microwave measurements of sea surface roughness. IEEE Transactions on Geoscience Electronics, 9(3): 165–169. doi: 10.1109/TGE.1971.271489
    [12] Jung T, Ruprecht E, Wagner F. 1998. Determination of cloud liquid water path over the oceans from special sensor microwave/imager (SSM/I) data using neural networks. Journal of Applied Meteorology and Climatology, 37(8): 832–844. doi: 10.1175/1520-0450(1998)037<0832:DOCLWP>2.0.CO;2
    [13] Kilic L, Prigent C, Aires F, et al. 2018. Expected performances of the copernicus imaging microwave radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters. Journal of Geophysical Research: Oceans, 123(10): 7564–7580. doi: 10.1029/2018JC014408
    [14] Koner P K, Harris A, Maturi E. 2015. A physical deterministic inverse method for operational satellite remote sensing: An application for sea surfacetemperature retrievals. IEEE Transactions on Geoscience and Remote Sensing, 53(11): 5872–5888. doi: 10.1109/TGRS.2015.2424219
    [15] Krasnopolsky V M, Gemmill W H, Breaker L C. 2000. A neural network multiparameter algorithm for SSM/I ocean retrievals: Comparisons and validations. Remote Sensing of Environment, 73(2): 133–142. doi: 10.1016/S0034-4257(00)00088-2
    [16] Le Vine D M. 1990. The sensitivity of synthetic aperture radiometers for remote sensing applications from space. Radio Science, 25(4): 441–453. doi: 10.1029/RS025i004p00441
    [17] Le Vine D M, Griffis A J, Swift C T, et al. 1994. ESTAR: A synthetic aperture microwave radiometer for remote sensing applications. Proceedings of the IEEE, 82(12): 1787–1801. doi: 10.1109/5.338071
    [18] Le Vine D M, Kao M, Swift C T, et al. 1990. Initial results in the development of a synthetic aperture microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing, 28(4): 614–619. doi: 10.1109/TGRS.1990.572965
    [19] Le Vine D M, Swift C T, Haken M. 2001. Development of the synthetic aperture microwave radiometer, ESTAR. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 199–202. doi: 10.1109/36.898685
    [20] Lim B H. 2009. The design and development of a geostationary synthetic thinned aperture radiometer [dissertation]. Michigan: The University of Michigan
    [21] Martin-Neira M, Menard Y, Goutoule J M, et al. 1994. MIRAS, a two-dimensional aperture synthesis radiometer. In: Proceeding of the 1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, USA: IEEE, 1323-1325
    [22] Martin-Neira M, Ribo S, Martin-Polegre A J. 2002. Polarimetric mode of MIRAS. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1755–1768. doi: 10.1109/TGRS.2002.802489
    [23] Mätzler C. 2006. Thermal Microwave Radiation: Applications for Remote Sensing. London: The Institution of Engineering and Technology
    [24] McClain E P, Pichel W G, Walton C C. 1985. Comparative performance of AVHRR-based multichannel sea surface temperatures. Journal of Geophysical Research: Oceans, 90(C6): 11587–11601. doi: 10.1029/JC090iC06p11587
    [25] McPhaden M J. 1999. Genesis and evolution of the 1997–98 El Niño. Science, 283(5404): 950–954. doi: 10.1126/science.283.5404.950
    [26] Meissner T, Wentz F J. 2004. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 42(9): 1836–1849. doi: 10.1109/TGRS.2004.831888
    [27] Meissner T, Wentz F. 2005. Ocean retrievals for WindSat: Radiative transfer model, algorithm, validation. In: Proceedings of OCEANS 2005 MTS/IEEE. Washington, DC, USA: IEEE, 130–133
    [28] Meissner T, Wentz F J. 2009. Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 47(9): 3065–3083. doi: 10.1109/TGRS.2009.2027012
    [29] Meissner T, Wentz F J. 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50(8): 3004–3026. doi: 10.1109/TGRS.2011.2179662
    [30] Obligis E, Labroue S, Amar A, et al. 2005. Neural networks to retrieve sea surface salinity from SMOS brightness temperatures. In: Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium. Seoul, South Korea: IEEE, 2568–2571
    [31] Ruf C S, Swift C T, Tanner A B, et al. 1988. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth. IEEE Transactions on Geoscience and Remote Sensing, 26(5): 597–611. doi: 10.1109/36.7685
    [32] Schanda E. 1979. Multiple wavelength aperture synthesis for passive sensing of the earth's surface. In: 1979 Antennas and Propagation Society International Symposium. Seattle, WA, USA: IEEE, 762–763
    [33] Stogryn A. 1967. The apparent temperature of the sea at microwave frequencies. IEEE Transactions on Antennas and Propagation, 15(2): 278–286. doi: 10.1109/TAP.1967.1138900
    [34] Ulaby F T, Dobson M C, Brunfeldt D R. 1983. Improvement of moisture estimation accuracy of vegetation-covered soil by combined active/passive microwave remote sensing. IEEE Transactions on Geoscience and Remote Sensing, GE-21(3): 300–307. doi: 10.1109/TGRS.1983.350557
    [35] Wang Rui, Shi Shunwen, Yan Wei, et al. 2014. Sea surface wind retrieval from polarimetric microwave radiometer in typhoon area. Chinese Journal of Geophysics (in Chinese), 57(3): 738–751
    [36] Wang Naiyu, Chang P S, Bettenhausen M, et al. 2005. WindSat physically based forward model: atmospheric component. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 5656, Active and Passive Remote Sensing of the Oceans: 104–110, doi: 10.1117/12.578811
    [37] Wentz F J, Meissner T. 2000. Algorithm theoretical basis document (ATBD). Version 2: AMSR Ocean Algorithm. Santa Rosa, CA: Remote Sensing Systems
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  130
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 录用日期:  2020-06-03
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回