Optical properties and surface energy flux of spring fast ice in the Arctic

Jialiang Zhu Yilin Liu Xiaoyu Wang Tao Li

Jialiang Zhu, Yilin Liu, Xiaoyu Wang, Tao Li. Optical properties and surface energy flux of spring fast ice in the Arctic[J]. Acta Oceanologica Sinica, 2021, 40(10): 84-96. doi: 10.1007/s13131-021-1828-9
Citation: Jialiang Zhu, Yilin Liu, Xiaoyu Wang, Tao Li. Optical properties and surface energy flux of spring fast ice in the Arctic[J]. Acta Oceanologica Sinica, 2021, 40(10): 84-96. doi: 10.1007/s13131-021-1828-9

doi: 10.1007/s13131-021-1828-9

Optical properties and surface energy flux of spring fast ice in the Arctic

Funds: The National Major Research High Resolution Sea Ice Model Development Program of China under contract No. 2018YFA0605903; the National Natural Science Foundation of China under contract No. 41776192; the Fundamental Research Funds for the Central Universities under contract No. 202165005.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Study site at Barrow, Alaska.

    Figure  2.  Radiometers used in the observation. a. CNR4, b. Ramses ACC-VIS, and c. PRR800/810.

    Figure  3.  In situ instrumentation on the site.

    Figure  4.  Time series for air temperature (AT) (a), relative humidity (RH) (b), pressure (P) (c), wind speed (WS) (d), and cloudness (e) during the study period.

    Figure  5.  Time series of the incident radiation (a), reflected radiation (b), spectral albedo (c), and integral albedo (d), measured by Ramses ACC-VIS in Barrow.

    Figure  6.  Time series of the incident radiation (a), transmitted radiation (b), spectral transmittance (c), and integral transmittance (d), measured by PRR800/810 in Barrow.

    Figure  7.  Time series of the incident radiation (a), absorbed radiation (b), spectral absorbance (c), and integral absorbance (d), derived from interpolated data from Ramses ACC-VIS and PRR800/810 in Barrow.

    Figure  8.  Variations in radiation and heat flux on the surface of the fast ice, including the incident shortwave Rsd, reflected shortwave Rsu, incident longwave Rld, reflected longwave Rlu, solar radiation at top of the atmosphere S, and albedo (a), net shortwave and longwave radiation (Ns and Nl) (b), and turbulent heat flux (c). The y-axis on the right in panel c is for the latent heat flux Fep.

    Figure  9.  Energy budget of fast ice in the spring. From left to right: net shortwave radiation, net longwave radiation, sensible heat flux, latent heat flux, and heat conduction, with their values marked.

    Figure  10.  Spectrum-independence of the albedo (a) and transmittance (b) from in situ observations and simulations with and without inclusions in the ice. The y-axis on the right in panel b is for the curve without interior inclusions.

    Figure  11.  Upper part of the ice core sampled at the site in Barrow.

    Table  1.   Summary of the weather and sky conditions in Barrow

    TimeDate
    May 10May 11May 12
    00:00partly sunnylow cloudsscattered clouds
    01:00partly sunnymostly cloudyovercast
    02:00broken cloudsovercastpartly sunny
    03:00overcastovercastpartly sunny
    04:00overcastovercastmostly cloudy
    05:00mostly cloudyovercastlow clouds
    06:00light snow, ice foglight rain, overcastbroken clouds
    07:00light snow, ice fogovercastbroken clouds
    08:00light snow, mostly cloudyovercastlow clouds
    09:00light freezing rain, vercastmostly cloudylow clouds
    10:00light rain, mostly cloudypartly sunnyovercast
    11:00more clouds than sunpartly sunnyovercast
    12:00partly sunnymostly cloudyovercast
    13:00partly sunnylight rain, overcastscattered clouds
    14:00partly sunnymostly cloudyscattered clouds
    15:00low cloudsovercastpartly sunny
    16:00low cloudsmore clouds than sunovercast
    17:00low cloudsovercastmostly cloudy
    18:00low cloudspartly sunnylight rain, mostly cloudy
    19:00low cloudsscattered cloudslight snow, mostly cloudy
    20:00low cloudspassing cloudslight snow, mostly cloudy
    21:00low cloudsscattered cloudslight snow, more clouds than sun
    22:00partly sunnypassing cloudslight snow, overcast
    23:00drizzle, low cloudsbroken cloudslight snow, ice fog
    下载: 导出CSV
  • [1] Barber D G, Asplin M G, Raddatz R L, et al. 2012. Change and variability in sea ice during the 2007−2008 Canadian International Polar Year program. Climatic Change, 115(1): 115–133. doi: 10.1007/s10584-012-0477-6
    [2] Barber D G, Galley R, Asplin M G, et al. 2009. Perennial pack ice in the southern Beaufort Sea was not as it appeared in the summer of 2009. Geophysical Research Letters, 36(24): L24501. doi: 10.1029/2009GL041434
    [3] Campbell K, Mundy C J, Barber D G, et al. 2014. Remote estimates of ice algae biomass and their response to environmental conditions during spring melt. Arctic, 67(3): 375–387. doi: 10.14430/arctic4409
    [4] Comiso J C. 2012. Large decadal decline of the Arctic multiyear ice cover. Journal of Climate, 25(4): 1176–1193. doi: 10.1175/JCLI-D-11-00113.1
    [5] Comiso J C, Parkinson C L, Gersten R, et al. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35(1): L01703. doi: 10.1029/2007GL031972
    [6] Ehn J K, Mundy C J, Barber D G. 2008a. Bio-optical and structural properties inferred from irradiance measurements within the bottommost layers in an Arctic landfast sea ice cover. Journal of Geophysical Research: Oceans, 113(C3): C03S03. doi: 10.1029/2007jc004194
    [7] Ehn J K, Papakyriakou T N, Barber D G. 2008b. Inference of optical properties from radiation profiles within melting landfast sea ice. Journal of Geophysical Research: Oceans, 113(C9): C09024. doi: 10.1029/2007jc004656
    [8] Eicken H, Gradinger R, Gaylord A, et al. 2005. Sediment transport by sea ice in the Chukchi and Beaufort Seas: increasing importance due to changing ice conditions?. Deep-Sea Research Part II: Topical Studies in Oceanography, 52(24–26): 3281–3302. doi: 10.1016/j.dsr2.2005.10.006
    [9] Eicken H, Reimnitz E, Alexandrov V, et al. 1997. Sea-ice processes in the Laptev Sea and their importance for sediment export. Continental Shelf Research, 17(2): 205–233. doi: 10.1016/S0278-4343(96)00024-6
    [10] Else B G T, Papakyriakou T N, Raddatz R, et al. 2014. Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset: the importance of net longwave radiation and cyclone forcings. Journal of Geophysical Research: Oceans, 119(6): 3679–3693. doi: 10.1002/2013JC009672
    [11] Gerland S, Haas C, Nicolaus M, et al. 2004. Seasonal development of structure and optical surface properties of fast ice in Kongsfjorden, Svalbard. Bremerhaven, Germany: Alfred Wegener Institute for Polar & Marine Resecareh, 26–34
    [12] Gerland S, Winther J G, Ørbæk J B, et al. 1999. Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard. Polar Research, 18(2): 275–282. doi: 10.3402/polar.v18i2.6585
    [13] Gradinger R R, Kaufman M R, Bluhm B A. 2009. Pivotal role of sea ice sediments in the seasonal development of near-shore Arctic fast ice biota. Marine Ecology Progress Series, 394: 49–63. doi: 10.3354/meps08320
    [14] Grenfell T C, Light B, Perovich D K. 2006. Spectral transmission and implications for the partitioning of shortwave radiation in arctic sea ice. Annals of Glaciology, 44: 1–6. doi: 10.3189/172756406781811763
    [15] Grenfell T C, Perovich D K. 1984. Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort Sea. Journal of Geophysical Research: Oceans, 89(C3): 3573–3580. doi: 10.1029/JC089iC03p03573
    [16] Grenfell T C, Perovich D K. 2004. Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. Journal of Geophysical Research: Oceans, 109(C1): C01001. doi: 10.1029/2003jc001866
    [17] Grenfell T C, Perovich D K, Eicken H, et al. 2007. Energy-and mass-balance observations of the land-ice-ocean-atmosphere system near Barrow, Alaska, USA, November 1999–July 2002. Annals of Glaciology, 44: 193–199. doi: 10.3189/172756406781811222
    [18] Grenfell T C, Warren S G. 1999. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. Journal of Geophysical Research: Atmospheres, 104(D24): 31697–31709. doi: 10.1029/1999JD900496
    [19] Haas C, Pfaffling A, Hendricks S, et al. 2008. Reduced ice thickness in Arctic transpolar drift favors rapid ice retreat. Geophysical Research Letters, 35(17): L17501. doi: 10.1029/2008GL034457
    [20] Hamre B, Winther J G, Gerland S, et al. 2004. Modeled and measured optical transmittance of snow-covered first-year sea ice in Kongsfjorden, Svalbard. Journal of Geophysical Research: Oceans, 109(C10): C10006. doi: 10.1029/2003jc001926
    [21] Hudson S R. 2011. Estimating the global radiative impact of the sea ice-albedo feedback in the Arctic. Journal of Geophysical Research: Atmospheres, 116(D16): D16102. doi: 10.1029/2011JD015804
    [22] Katlein C, Arndt S, Belter H J, et al. 2019. Seasonal evolution of light transmission distributions through Arctic sea ice. Journal of Geophysical Research: Oceans, 124(8): 5418–5435. doi: 10.1029/2018JC014833
    [23] Kempama E W, Reimnitz E, Barnes P W. 1989. Sea ice sediment entrainment and rafting in the Arctic. Journal of Sedimentary Research, 59(2): 308–317
    [24] Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36(15): L15501. doi: 10.1029/2009GL039035
    [25] Leu E, Mundy C J, Assmy P, et al. 2015. Arctic spring awakening-steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography, 139: 151–170. doi: 10.1016/j.pocean.2015.07.012
    [26] Light B, Eicken H, Maykut G A, et al. 1998. The effect of included participates on the spectral albedo of sea ice. Journal of Geophysical Research: Oceans, 103(C12): 27739–27752. doi: 10.1029/98jc02587
    [27] Light B, Grenfell T C, Perovich D K. 2008. Transmission and absorption of solar radiation by Arctic sea ice during the melt season. Journal of Geophysical Research: Oceans, 113(C3): C03023. doi: 10.1029/2006jc003977
    [28] Light B, Perovich D K, Webster M A, et al. 2015. Optical properties of melting first-year Arctic sea ice. Journal of Geophysical Research: Oceans, 120(11): 7657–7675. doi: 10.1002/2015JC011163
    [29] Liu Changwei, Gao Zhiqiu, Yang Qinghua, et al. 2020. Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016. Annals of Glaciology, 61(82): 12–23. doi: 10.1017/aog.2019.48
    [30] Lu Peng, Leppäranta M, Cheng Bin, et al. 2016. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance. Cold Regions Science and Technology, 124: 1–10. doi: 10.1016/j.coldregions.2015.12.010
    [31] Malinka A, Zege E, Heygster G, et al. 2016. Reflective properties of white sea ice and snow. The Cryosphere, 10(6): 2541–2557. doi: 10.5194/tc-10-2541-2016
    [32] Markus T, Stroeve J C, Miller J. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research: Oceans, 114(C12): C12024. doi: 10.1029/2009JC005436
    [33] Maslanik J A, Fowler C, Stroeve J, et al. 2007. A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34(24): L24501. doi: 10.1029/2007GL032043
    [34] Maslanik J, Stroeve J, Fowler C, et al. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38(13): L13502. doi: 10.1029/2011GL047735
    [35] Maykut G A. 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7): 3646–3658. doi: 10.1029/JC083iC07p03646
    [36] Maykut G A. 1982. Large-scale heat exchange and ice production in the Central Arctic. Journal of Geophysical Research: Oceans, 87(C10): 7971–7984. doi: 10.1029/JC087iC10p07971
    [37] Mundy C J, Ehn J K, Barber D G, et al. 2007. Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. Journal of Geophysical Research: Oceans, 112(C3): C03007. doi: 10.1029/2006JC003683
    [38] Nghiem S V, Rigor I G, Perovich D K, et al. 2007. Rapid reduction of Arctic perennial sea ice. Geophysical Research Letters, 34(19): L19504. doi: 10.1029/2007GL031138
    [39] Nicolaus M, Gerland S, Hudson S R, et al. 2010. Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar Drift in 2007. Journal of Geophysical Research: Oceans, 115(C11): C11011. doi: 10.1029/2009JC006074
    [40] Nicolaus M, Petrich C, Hudson S R, et al. 2013. Variability of light transmission through Arctic land-fast sea ice during spring. The Cryosphere, 7(3): 977–986. doi: 10.5194/tc-7-977-2013
    [41] Nürnberg D, Wollenburg I, Dethleff D, et al. 1994. Sediments in Arctic sea ice: Implications for entrainment, transport and release. Marine Geology, 119(3–4): 185–214. doi: 10.1016/0025-3227(94)90181-3
    [42] Osterkamp T E, Gosink J P. 1984. Observations and analyses of sediment-laden sea ice. In: Barnes P W, Schell D M, Reimnitz E, eds. The Alaskan Beaufort Sea: Ecosystems and Environments. Pittsburgh, PA, USA: Academic Press, 73–93
    [43] Perovich D K. 1990. Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers. Journal of Geophysical Research: Oceans, 95(C6): 9557–9567. doi: 10.1029/JC095iC06p09557
    [44] Perovich D K. 1991. Seasonal changes in sea ice optical properties during fall freeze-up. Cold Regions Science and Technology, 19(3): 261–273. doi: 10.1016/0165-232X(91)90041-E
    [45] Perovich D K, Gow A J. 1996. A quantitative description of sea ice inclusions. Journal of Geophysical Research: Oceans, 101(C8): 18327–18343. doi: 10.1029/96JC01688
    [46] Perovich D K, Polashenski C. 2012. Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39(8): L08501. doi: 10.1029/2012gl051432
    [47] Perovich D K, Richter-Menge J A. 2015. Regional variability in sea ice melt in a changing Arctic. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045): 20140165. doi: 10.1098/rsta.2014.0165
    [48] Perovich D K, Roesler C S, Pegau W S. 1998. Variability in Arctic sea ice optical properties. Journal of Geophysical Research: Oceans, 103(C1): 1193–1208. doi: 10.1029/97jc01614
    [49] Persson P O G, Fairall C W, Andreas E L, et al. 2002. Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. Journal of Geophysical Research: Oceans, 107(C10): 8045. doi: 10.1029/2000JC000705
    [50] Qu Ping, Zhao Jinping, Li Shujiang, et al. 2009. Spectral features of solar radiation in sea ice of Bohai Sea. Haiyang Xuebao (in Chinese), 31(1): 37–43
    [51] Reimnitz E, McCormick M, McDougall K, et al. 1993. Sediment export by ice rafting from a coastal polynya, Arctic Alaska, U.S.A. Arctic and Alpine Research, 25(2): 83–98. doi: 10.2307/1551544
    [52] Rigor I G, Wallace J M. 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters, 31(9): L09401. doi: 10.1029/2004GL019492
    [53] Rothrock D A, Percival D B, Wensnahan M. 2008. The decline in Arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research: Oceans, 113(C5): C05003. doi: 10.1029/2007JC004252
    [54] Serreze M C, Holland M M, Stroeve J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315(5818): 1533–1536. doi: 10.1126/science.1139426
    [55] Stierle A P, Eicken H. 2002. Sediment inclusions in alaskan coastal sea ice: spatial distribution, interannual variability, and entrainment requirements. Arctic, Antarctic, and Alpine Research, 34(4): 465–476. doi: 10.1080/15230430.2002.12003518
    [56] Stroeve J, Holland M M, Meier W, et al. 2007. Arctic sea ice decline: faster than forecast. Geophysical Research Letters, 34(9): L09501. doi: 10.1029/2007GL029703
    [57] Stroeve J, Notz D. 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13(10): 103001. doi: 10.1088/1748-9326/aade56
    [58] Xu Zhantang, Yang Yuezhong, Wang Guifen, et al. 2012. Optical properties of sea ice in Liaodong Bay, China. Journal of Geophysical Research: Oceans, 117(C3): C03007. doi: 10.1029/2010jc006756
    [59] Zhao Jinping, Li Tao. 2010. Solar radiation penetrating through sea ice under very low solar altitude. Journal of Ocean University of China, 9(2): 116–122. doi: 10.1007/s11802-010-0116-7
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  78
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 录用日期:  2021-02-19
  • 网络出版日期:  2021-08-16
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回