Three-dimensional dynamic sea surface modeling based on ocean wave spectrum

Zhimiao Chang Fuxing Han Zhangqing Sun Zhenghui Gao Lili Wang

Zhimiao Chang, Fuxing Han, Zhangqing Sun, Zhenghui Gao, Lili Wang. Three-dimensional dynamic sea surface modeling based on ocean wave spectrum[J]. Acta Oceanologica Sinica, 2021, 40(10): 38-48. doi: 10.1007/s13131-021-1871-6
Citation: Zhimiao Chang, Fuxing Han, Zhangqing Sun, Zhenghui Gao, Lili Wang. Three-dimensional dynamic sea surface modeling based on ocean wave spectrum[J]. Acta Oceanologica Sinica, 2021, 40(10): 38-48. doi: 10.1007/s13131-021-1871-6

doi: 10.1007/s13131-021-1871-6

Three-dimensional dynamic sea surface modeling based on ocean wave spectrum

Funds: The General Program of National Natural Science Foundation of China under contract No. 42074150; the National Key Research and Development Project under contract No. 2017YFC0601305.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Spectrum distribution of JONSWAP spectrum.

    Figure  2.  Distribution characteristics of direction distribution functions (a) and JONSWAP direction spectrums (b).

    Figure  3.  Simple harmonic.

    Figure  4.  Gerstner wave.

    Figure  5.  Simple harmonic sea surface simulation process.

    Figure  6.  Sea surface at four times: the sea surface at 1 s (a); the sea surface at 2 s (b); the sea surface at 3 s (c); the sea surface at 4 s (d). And the place marked by the box is to illustrate the undulating characteristics of the sea surface below.

    Figure  7.  Gerstner wave sea surface simulation process.

    Figure  8.  Sea surface at four times: the sea surface at 1 s (a); the sea surface at 2 s (b); the sea surface at 3 s (c); the sea surface at 4 s (d). And the place marked by the box is to explain the propulsion characteristics of the sea surface below.

    Figure  9.  Wave equation sea surface simulation process.

    Figure  10.  Sea surface at four times: the sea surface at 1 s (a); the sea surface at 2 s (b); the sea surface at 3 s (c); the sea surface at 4 s (d).

    Figure  11.  The sea surface model drawn by the simple harmonics.

    Figure  12.  The sea surface model drawn by the Gerstner waves.

    Figure  13.  The sea surface model drawn by the wave equation.

    Figure  14.  Wave equation sea surface simulation process under dynamic boundary conditions.

    Figure  15.  Sea surface at four times: the sea surface at 1 s (a); the sea surface at 2 s (b); the sea surface at 3 s (c); the sea surface at 4 s (d).

    Figure  16.  Calculation time comparison.

    Figure  17.  Sea surface simulated by improved wave equation method.

    Figure  18.  Sea surface simulated by HOS method.

    Figure  19.  Sea surface simulated by improved wave equation method (top view).

    Figure  20.  Sea surface simulated by HOS method (top view).

    Table  1.   Parameters required for simulation

    ParametersValue
    Wind speed $ U $ at 19.5 m above sea surface8 m/s
    Wind direction dfπ/3
    Wind direction division number $ m $30
    Wind direction interval $ {\rm d}\theta $2π/m
    Frequency interval ${\rm d} {\omega}$π/100
    Computational grid$ 100\times 100 $
    Time step1 s
    下载: 导出CSV

    Table  2.   Calculation time comparison

    ModelSimple
    harmonic
    Gerstner
    wave
    Wave
    equation
    Time required
    to calculate
    100 groups/s
    876. 773 216. 1974.02
    下载: 导出CSV
  • [1] Cecconello E, Asgedom E G, Orji O C, et al. 2018. Modeling scattering effects from time-varying sea surface based on acoustic reciprocity. Geophysics, 83(2): T49–T68. doi: 10.1190/geo2017-0410.1
    [2] Chen Keyang. 2013. 3D water motion simulation based on wave equation. Journal of Beijing Union University (in Chinese), 27(3): 86–88
    [3] Cote L J. 1960. The directional spectrum of a wind generated sea as determined from data obtained by the stereo wave observation project [dissertation]. New York: New York University, 88
    [4] Dommermuth D G, Yue D K P. 1987. A high-order spectral method for the study of nonlinear gravity waves. Journal of Fluid Mechanics, 184: 267–288. doi: 10.1017/S002211208700288X
    [5] Ducrozet G, Bonnefoy F, Le Touzé D, et al. 2016. HOS-ocean: open-source solver for nonlinear waves in open ocean based on high-order spectral method. Computer Physics Communications, 203: 245–254. doi: 10.1016/j.cpc.2016.02.017
    [6] Fournier A, Reeves W T. 1986. A simple model of ocean waves. ACM SIGGRAPH Computer Graphics, 20(4): 75–84. doi: 10.1145/15886.15894
    [7] Hasselmann K. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Hamburg, Germany: Deutches Hydrographisches Institut, 8
    [8] Hasselmann K, Sell W, Ross D B, et al. 1976. A parametric wave prediction model. Journal of Physical Oceanography, 6(2): 200–228. doi: 10.1175/1520-0485(1976)006<0200:APWPM>2.0.CO;2
    [9] Laws R, Kragh E. 2002. Rough seas and time-lapse seismic. Geophysical Prospecting, 50(2): 195–208. doi: 10.1046/j.1365-2478.2002.00311.x
    [10] Li Sujun, Song Hanchen, Wu Lingda. 2006. Real-time modeling and rendering of ocean waves in digital naval battlefields. Journal of System Simulation (in Chinese), 18(S1): 255–257, 259
    [11] Liu Yingzhong, Liu Hedong, Miao Guoping, et al. 1998. Numerical simulation on water waves by NS equations. Journal of Shanghai Jiaotong University (in Chinese), 32(11): 1–7
    [12] Liu Jie, Zou Beiji, Zhou Jieqiong, et al. 2006. Modeling Gerstner waves based on the ocean wave spectrum. Computer Engineering and Science (in Chinese), 28(2): 41–44
    [13] Longuet-Higgins M S. 1952. On the statistical distribution of the heights of sea waves. Journal of Marine Research, 11(3): 245–266
    [14] Meng Xiangyu, Sun Jianguo, Wei Puli, et al. 2019. Undulating sea surface influence on reflection seismic responses. Oil Geophysical Prospecting (in Chinese), 54(4): 787–795
    [15] Monaghan J J. 2005. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8): 1703–1759. doi: 10.1088/0034-4885/68/8/R01
    [16] Phillips O M. 1958. The equilibrium range in the spectrum of wind-Generated waves. Journal of Fluid Mechanics, 4(4): 426–434. doi: 10.1017/S0022112058000550
    [17] Pierson W J Jr, Moskowitz L. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 69(24): 5181–5190. doi: 10.1029/JZ069i024p05181
    [18] Qi Peng. 2015. Seismic wave modeling under the complex marine conditions (in Chinese)[dissertation]. Changchun: Jilin University
    [19] Qi Ning, Xia Tian, Li Wenyan, et al. 2013. Simulation of the mathematical model of 3-D irregular wave based on MATLAB. Computer Knowledge and Technology (in Chinese), 9(25): 5737–5739
    [20] Shen Yanming, Shi Wenkui, Chen Jianqiang, et al. 2020. Application of SPH method with space-based variable smoothing length to water entry simulation. Journal of Ship Mechanics (in Chinese), 24(3): 323–331
    [21] Sun Xiaoyan, Wang Jun. 2007. Theories and application on Smoothed Particle Hydrodynamics method. Water Resources and Hydropower Engineering (in Chinese), 38(3): 44–46
    [22] Wang Xianhua, Peng Zhaohui, Li Zhenglin. 2007. Effects of wave fluctuation on sound propagation. Technical Acoustics (in Chinese), 26(4): 551–556
    [23] Wu Chengsheng, Zhu Dexiang, Gu Min. 2008. Simulation of radiation problem moving with forward speed by solving N-S equations. Journal of Ship Mechanics (in Chinese), 12(4): 560–567
    [24] Zhang Sijiang, Yang Jie, Ouyang Yi. 2013. 3D numerical simulation of sea wave based on directional spectrum. Shipboard Electronic Countermeasure (in Chinese), 36(4): 54–57
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  1459
  • HTML全文浏览量:  566
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 录用日期:  2021-06-15
  • 网络出版日期:  2021-09-07
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回