A new species of the glass sponge genus Walteria (Hexactinellida: Lyssacinosida: Euplectellidae) from northwestern Pacific seamounts, providing a biogenic microhabitat in the deep sea

Chengcheng Shen Hong Cheng Dongsheng Zhang Bo Lu Chunsheng Wang

Chengcheng Shen, Hong Cheng, Dongsheng Zhang, Bo Lu, Chunsheng Wang. A new species of the glass sponge genus Walteria (Hexactinellida: Lyssacinosida: Euplectellidae) from northwestern Pacific seamounts, providing a biogenic microhabitat in the deep sea[J]. Acta Oceanologica Sinica, 2021, 40(12): 39-49. doi: 10.1007/s13131-021-1939-3
Citation: Chengcheng Shen, Hong Cheng, Dongsheng Zhang, Bo Lu, Chunsheng Wang. A new species of the glass sponge genus Walteria (Hexactinellida: Lyssacinosida: Euplectellidae) from northwestern Pacific seamounts, providing a biogenic microhabitat in the deep sea[J]. Acta Oceanologica Sinica, 2021, 40(12): 39-49. doi: 10.1007/s13131-021-1939-3

doi: 10.1007/s13131-021-1939-3

A new species of the glass sponge genus Walteria (Hexactinellida: Lyssacinosida: Euplectellidae) from northwestern Pacific seamounts, providing a biogenic microhabitat in the deep sea

Funds: The National Natural Science Foundation of China under contract No. 41706149; the Foundation of China Ocean Mineral Resources R&D Association under contract Nos DY135-E2-2-03 and DY135-E2-2-06; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources, under contract No. JG1716.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Walteria demeterae sp. nov. specimens. Holotype: in situ images (a1), whole collected specimen including five segments (a2), close-up images of a slightly damaged apex (a3), middle body (a4), and basal part (a5); paratype: in situ image (b1), whole collected specimen including two segments (b2), and close-up image of middle body showing fused skeleton (b3).

    Figure  2.  Walteria demeterae sp. nov., seafloor images of the same morphotype observed at dive ROV08 of cruise DY48/I from the Suda Seamount in the northwestern Pacific Ocean. a. Living individuals showing different shapes of tubular body with close-up images of small terminal osculum in the pointed apex, circular strands in the inner wall, and lateral processes projecting from the body wall; b. dead individuals showing different degrees of erosion with close-up images of pointed apex and basal part; c. concurrence of both living and dead individuals in one image; d. examples of invertebrates associated with living or dead individuals, including Comatulida, Spongicolidae, Ophioplinthaca defensor, Paguridae, Cirripedia and others (from top to bottom, then from left to right).

    Figure  3.  Walteria demeterae sp. nov., surfaces of holotype. Dermal surface of body wall with lateral oscula (a1), close-up image of crossing longitudinal and transverse bundles (a2), and SEM of longitudinal bundles (a3); atrial surface of body wall with lateral oscula (b1), close-up image of crossing longitudinal and transverse bundles (b2), and SEM of transverse bundles (b3); lateral processes of dichotomously branching (c1) or simple (c2) outgrowths, the SEM of framework at junction of body wall and lateral process (c3) and its fused diactins (c4); attached stauractins (d1, d2), pentactins (d3, d4) and occasionally hexactins (d5).

    Figure  4.  Walteria demeterae sp. nov., spicules. a. Choanosomal diactin, whole and enlargements of three types of rays and middle segments; b. choanosomal stauractin, whole and enlargements of axial centre and two types of rays; c. dermal sword hexactin, whole and enlargements of tangential, proximal and two types of distal rays; d. atrial pentactin, whole and enlargements of axial centre, proximal ray, and two types of tangential rays with a smooth or slightly rough tip; e. oxyhexactins, which are sparsely covered by fine spines (located all over the body, e1) or entirely covered by macrospines (restricted to the basal part, e2), whole and enlargements of centres and rays; f. graphiocome, primary centre and terminal ray at same scale, enlargements of primary centre and both the basal part and tip of terminal ray; g. discohexasters in common dense form or rare sparse form (corresponding to “discohexaster 1” and “discohexaster 2” described for W. flemmingii and W. leuckarti by Reiswig and Kelly, 2018), whole and enlargements of terminal ray and disc; h. onychohexaster, whole and enlargements of six types of onychoid tips with 1–5 claws; i. floricome, whole (not intact) and enlargements of terminal ray and tip.

    Figure  5.  Maximum-likelihood phylogenetic tree of 32 species from four families of Class Hexactinellida (by taking three species of the genus Tretopleuraas as outgroups), showing the relationships of the species Walteria demeterae sp. nov. and related taxa. The tree was inferred from the concatenated alignments of 18S rDNA, 28S rDNA, 16S rDNA and COI. Numbers at nodes are SH-aLRT/ UFBoot support values (all based on 1 000 replicates).

    Table  1.   GenBank accession numbers of marker genes of the 32 species used in the molecular phylogenetic analysis

    Order: familySpeciesVoucher numberAccession number
    18S rDNA28S rDNA16S rDNACOI gene
    Lyssacinosida: EuplectellidaeWalteria demeterae sp. nov. (holotype)SIO-POR-244MW652662MW652660MW652655MW517848
    Walteria leuckartiSMF 10522AM886399AM886373AM886337FR848939
    Docosaccus maculatusGW5429FM946116FM946115FM946105FR848934
    Rhabdopectella tintinnusHBOI 4-X-88-2-014AM886402AM886371AM886332FR848941
    Regadrella sp.HBFH 8-VIII-09-2-001/FR848916FR848917/
    Rhizophyta yapensisSIO-POR-083MK463603MK463607MK458682MK453399
    Acoelocalyx bruceiSMF 10530AM886401AM886370AM886333FR848938
    Malacosaccus coatsiSMF 10521AM886400AM886369AM886334FR848937
    Euplectella sp. 1HBOI 19-XI-86-1-001AM886397AM886368AM886335FR848935
    Euplectella sp. 2HBOI 12-XI-86-1-054AM886398AM886367AM886336/
    Saccocalyx microhexactinMBM179994//KM881702/
    Saccocalyx pedunculatusSMF 12082MF740862MF684009MF683987/
    Hertwigia sp.USNM 1122181FM946121FM946120FM946104FR848940
    Bolosoma sp.USNM 1097546FM946118FM946117FM946102FR848942
    Bolosominae n. gen. n. sp.HURL P4-224-sp7/LT627534LT627520LT627552
    Atlantisella sp.HBOI 22-X-95-1-7LT627547LT627533LT627519/
    Holascus euonyxSMF12092MF740859/MF683980/
    Holascus taraxacumSMF12059/MF684005MF683982/
    Hyalostylus microfloricomusSMF12085MF740860MF684007MF683984/
    Hyalostylus schulzeiSMF11707//MF683985/
    Lyssacinosida: RossellidaeRossella nudaSMF 10531AM886384AM886355AM886343HE580217*
    Nodastrella asconemaoidaZMA POR18484AM886386AM886354AM886344FR848921
    Caulophacus arcticusSMF 10520AM886395AM886360AM886350FR819684
    Caulophacella tenuisSMF 10533AM886392AM886363AM886351FR848927
    Caulophacus valdiviaeSMF 10528AM886394AM886362AM886348FR848929
    Caulophacus weddelliSMF 10527AM886393AM886361AM886349FR848928
    Crateromorpha meyeriSMF 10525AM886389AM886359AM886347FR848923
    Bathydorus spinosusSMF 10526AM886390AM886358AM886341FR848924
    Lyssacinosida: AulocalycidaeEuryplegma auriculareNIWA 43457/LT627535LT627518LT627551
    Sceptrulophora: UncinateridaeTretopleura weijicaSIO-POR-090//MT176124MT178277
    Tretopleura sp. 1HURL P4-229-sp10/LT627542LT627529LT627556
    Tretopleura sp. 2HURL P5-701-sp4/LT627543LT627530LT627555
    Note: The symbol “*” refers that the COI gene of Rossella nuda was from the voucher SMF 11730.
    下载: 导出CSV

    Table  2.   Spicule dimensions of Walteria demeterae sp. nov., holotype

    SpiculeDimensionMeanS.D.MinMaxN
    Choanosomal diactinlength/µm1 071.4881.9451.04 300.030
    width/µm14.03.48.027.530
    Choanosomal stauractinlong ray length/µm265.9164.7168.5738.911
    short ray length/µm157.632.7107.5211.311
    ray width/µm14.22.98.818.511
    Dermal sword hexactin (lateral processes)distal ray length/µm172.044.888.9275.030
    distal ray basal width/µm15.22.111.120.030
    distal ray maximum width/µm19.43.814.030.030
    tangential ray length/µm122.324.672.2186.030
    tangential ray width/µm13.21.39.315.330
    proximal ray length/µm506.6140.2243.3882.030
    proximal ray width/µm14.51.411.317.330
    Dermal sword hexactin (body wall)distal ray length/µm136.253.049.2215.014
    distal ray basal width/µm15.13.87.422.714
    distal ray maximum width/µm19.45.810.033.314
    tangential ray length/µm121.746.564.3215.314
    tangential ray width/µm13.13.46.818.014
    proximal ray length/µm431.9181.2114.0686.714
    proximal ray width/µm13.63.06.418.714
    Atrial pentactintangential ray length/µm158.030.7111.5225.030
    tangential ray width/µm13.72.68.318.730
    proximal ray length/µm310.2137.283.3654.030
    proximal ray width/µm14.83.28.321.730
    Oxyhexactinray length/µm180.335.7115.0265.040
    ray width/µm8.02.13.912.440
    Oxyhexactin (base)ray length/µm117.729.871.5195.330
    ray width/µm3.00.52.34.030
    spine max. length/µm7.12.33.012.030
    Graphiocomecentre diameter/µm25.61.822.729.730
    primary ray length/µm7.50.86.310.030
    primary ray width/µm2.10.21.82.530
    raphide length/µm158.913.2100.0179.050
    Discohexasterdiameter/µm88.96.677.5110.030
    primary ray length/µm5.81.23.59.030
    secondary ray length/µm35.72.830.046.130
    Onychohexasterdiameter/µm83.08.870.0100.025
    primary ray length/µm4.10.92.56.725
    secondary ray length/µm37.03.930.045.225
    Floricomediameter/µm122.154.084.7184.03
    primary ray length/µm5.82.33.88.33
    secondary ray length/µm53.526.433.383.33
    下载: 导出CSV
  • [1] Bankevich A, Nurk S, Antipov D, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5): 455–477. doi: 10.1089/cmb.2012.0021
    [2] Beazley L I, Kenchington E L, Murillo F J, et al. 2013. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES Journal of Marine Science, 70(7): 1471–1490. doi: 10.1093/icesjms/fst124
    [3] Bell J J. 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science, 79(3): 341–353
    [4] Chernomor O, von Haeseler A, Minh B Q. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65(6): 997–1008. doi: 10.1093/sysbio/syw037
    [5] de Voogd N J, Alvarez B, Boury-Esnault N, et al. 2021. World Porifera Database. Corbitellinae Gray, 1872. http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=171848 [2021-10-27]
    [6] Dohrmann M, Janussen D, Reitner J, et al. 2008. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Systematic Biology, 57(3): 388–405. doi: 10.1080/10635150802161088
    [7] Dohrmann M, Kelley C, Kelly M, et al. 2017. An integrative systematic framework helps to reconstruct skeletal evolution of glass sponges (Porifera, Hexactinellida). Frontiers in Zoology, 14: 18. doi: 10.1186/s12983-017-0191-3
    [8] Dohrmann M. 2019. Progress in glass sponge phylogenetics: a comment on Kersken et al. (2018). Hydrobiologia, 843: 51–59. doi: 10.1007/s10750-018-3708-7
    [9] Folmer O, Black M, Hoeh W, et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5): 294–299
    [10] Grant R E. 1836. Animal kingdom. In: Todd R B, ed. The Cyclopaedia of Anatomy and Physiology. Vol 1. London: Sherwood, Gilbert, and Piper, 107–118
    [11] Gray J E. 1867. Notes on the arrangement of sponges, with the descriptions of some new genera. Proceedings of the Zoological Society of London, 1867(2): 492–558, pls XXVII–XXVIII
    [12] Gray J E. 1872. XX. —On a new genus of hexaradiate and other sponges discovered in the Philippine Islands by Dr. A. B. Meyer. Annals and Magazine of Natural History, 10(56): 134–139. doi: 10.1080/00222937208696659
    [13] Guindon S, Dufayard J F, Lefort V, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3): 307–321. doi: 10.1093/sysbio/syq010
    [14] Hajdu E, Castello-Branco C, Lopes D A, et al. 2017. Deep-sea dives reveal an unexpected hexactinellid sponge garden on the Rio Grande Rise (SW Atlantic). A mimicking habitat?. Deep-Sea Research Part II: Topical Studies in Oceanography, 146: 93–100. doi: 10.1016/j.dsr2.2017.11.009
    [15] Hoang D T, Chernomor O, von Haeseler A, et al. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2): 518–522. doi: 10.1093/molbev/msx281
    [16] Ijima I. 1896. Notice of new Hexactinellida from Sagami Bay: II. Zoologischer Anzeiger, 19: 249–254
    [17] Kou Qi, Gong Lin, Li Xinzheng. 2018. A new species of the deep-sea spongicolid genus Spongicoloides (Crustacea, Decapoda, Stenopodidea) and a new species of the glass sponge genus Corbitella (Hexactinellida, Lyssacinosida, Euplectellidae) from a seamount near the Mariana Trench, with a novel commensal relationship between the two genera. Deep-Sea Research Part I: Oceanographic Research Papers, 135: 88–107. doi: 10.1016/j.dsr.2018.03.006
    [18] MacIntosh H, Althaus F, Williams A, et al. 2018. Invertebrate diversity in the deep Great Australian Bight (200–5 000m). Marine Biodiversity Records, 11: 23. doi: 10.1186/s41200-018-0158-x
    [19] Minh B Q, Nguyen M A T, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30(5): 1188–1195. doi: 10.1093/molbev/mst024
    [20] Na Jieying, Chen Wanying, Zhang Dongsheng, et al. 2021. Morphological description and population structure of an ophiuroid species from cobalt-rich crust seamounts in the Northwest Pacific: implications for marine protection under deep-sea mining. Acta Oceanologica Sinica, 40(8): 1–11. doi: 10.1007/s13131-021-1804-4
    [21] Nguyen L T, Schmidt H A, von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268–274. doi: 10.1093/molbev/msu300
    [22] Rambaut A. 2006. FigTree v1.4. 2. Computer software and manual. http://tree.bio.ed.ac.uk/software/figtree [2014-07-09/2021-09-01]
    [23] Reiswig H M, Kelly M. 2018. The marine fauna of New Zealand. Euplectellid glass sponges (Hexactinellida, Lyssacinosida, Euplectellidae). NIWA Biodiversity Memoir, 130: 1–170
    [24] Schmidt O. 1870. Grundzüge einer Spongien-Fauna des atlantischen Gebietes (in German). Leipzig: Wilhelm Engelmann, 1–88
    [25] Schulze F E. 1886. Über den Bau und das System der Hexactinelliden. Abhandlungen der Kö niglichen Akademie der Wissenschaften zu Berlin (Physikalisch-Mathematische Classe) (in German), 1–97
    [26] Schulze F E. 1887. Report on the Hexactinellida collected by H. M. S. ‘Challenger’ during the years 1873–76. Report on the Scientific Results of the Voyage of H. M. S. Challenger during the years 1873–76. Zoology, 21(part 53): 1–514
    [27] Shen Chengcheng, Dohrmann M, Zhang Dongsheng, et al. 2019. A new glass sponge genus (Hexactinellida: Euplectellidae) from abyssal depth of the Yap Trench, northwestern Pacific Ocean. Zootaxa, 4567(2): 367–378. doi: 10.11646/zootaxa.4567.2.9
    [28] Tabachnick K, Fromont J, Ehrlich H, et al. 2019. Hexactinellida from the Perth Canyon, eastern Indian Ocean, with descriptions of five new species. Zootaxa, 4664(1): 47–82. doi: 10.11646/zootaxa.4664.1.2
    [29] Tabachnick K R. 1988. Hexactinellid sponges from the mountains of the West Pacific. In: Shirshov P P, ed. Structural and Functional Researches of the Marine Benthos. Moscow: Academy of Sciences of the USSR, 49–64
    [30] Tabachnick K R. 2002. Family Euplectellidae Gray, 1867. In: Hooper J N A, Van Soest R W M, Willenz P, eds. Systema Porifera: A Guide to the Classification of Sponges. Boston, MA: Springer, 1388–1434
    [31] Xu Peng, Zhou Yadong, Wang Chunsheng. 2017. A new species of deep-sea sponge-associated shrimp from the North-West Pacific (Decapoda, Stenopodidea, Spongicolidae). ZooKeys, 685: 1–14. doi: 10.3897/zookeys.685.11341
    [32] Zittel K A. 1877. Studien über fossile Spongien. In: Hexactinellidae. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften, Mathematisch-Physikalisch Klasse (in German), 13(1): 1–63
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  837
  • HTML全文浏览量:  355
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 录用日期:  2021-10-15
  • 网络出版日期:  2021-11-29
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回