Ensemble habitat suitability modeling of stomatopods with Oratosquilla oratoria as an example

Lisha Guan Xianshi Jin Tao Yang Xiujuan Shan

Lisha Guan, Xianshi Jin, Tao Yang, Xiujuan Shan. Ensemble habitat suitability modeling of stomatopods with Oratosquilla oratoria as an example[J]. Acta Oceanologica Sinica, 2023, 42(4): 93-102. doi: 10.1007/s13131-022-2051-z
Citation: Lisha Guan, Xianshi Jin, Tao Yang, Xiujuan Shan. Ensemble habitat suitability modeling of stomatopods with Oratosquilla oratoria as an example[J]. Acta Oceanologica Sinica, 2023, 42(4): 93-102. doi: 10.1007/s13131-022-2051-z

doi: 10.1007/s13131-022-2051-z

Ensemble habitat suitability modeling of stomatopods with Oratosquilla oratoria as an example

Funds: The National Natural Science Foundation of China under contract No. 31902375; the David and Lucile Packard Foundation; the Innovation Team of Fishery Resources and Ecology in the Yellow Sea and Bohai Sea under contract No. 2020TD01; the Special Funds for Taishan Scholars Project of Shandong Province.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The distributions of successfully sampled stations in April (circles), May (triangles) and June (plus signs) in the Bohai Sea with bathymetric information from the monthly bottom trawl surveys conducted by the Yellow Sea Fisheries Research Institute in 2017 (a); frequency distribution of log-transformed Oratosquilla oratoria densities in these stations, except six stations without catch of this species (b). D: density, g/h.

    Figure  2.  View of generalized additive model (GAM) (a) and geographical weighted regression (GWR) model (b) selection with eight environmental predictors and Akaike Information Criterion corrected (AICc) (c) values of all alternative models. AICc of the optimal models was shaded in red. BT: bottom temperature; BS: bottom salinity; D: density.

    Figure  3.  Spline smooth regression curves of five environmental predictors included in the optimal generalized additive model showing their respective effects on Oratosquilla oratoria density. BT: bottom temperature; BS: bottom salinity.

    Figure  4.  Local coefficient estimates derived from geographically weighted regressions of log-scaled Oratosquilla oratoria density to separate environmental predictors included in the optimal geographical weighted regression model. BT: bottom temperature.

    Figure  5.  Mapping of generalized additive model (GAM)-based habitat suitability index (HSI) (a, c, e) and geographical weighted regression (GWR)-based HSIs (b, d, f) for Oratosquilla oratoria in April, May and June 2017. The density (g/h) distributions of O. oratoria in corresponding months of 2017 were plotted as circles over the HSI maps. Polygons in panels c and d show areas for three place-based O. oratoria fisheries in May 2021.

    Figure  6.  Scatter plots and linear relationships of predicted habitat suitability index (HSI) from generalized additive model (GAM)- and geographical weighted regression (GWR)-based habitat suitability models against log-transformed Oratosquilla oratoria densities (lg D; D, unit: g/h) at observed stations in April (blue circles), May (cyan triangles) and June (pink plus signs) 2017.

    Figure  7.  Mapping of habitat suitability index (HSI) from the ensemble habitat suitability models for Oratosquilla oratoria in April (a), May (b) and June (c) 2017. The density (g/h) distributions of O. oratoria in corresponding months of 2017 were plotted as circles over respective HSI maps. Polygons in panel b show areas for three place-based O. oratoria fisheries in May 2021.

    Table  1.   Sediment grain sizes associated with Wentworth classes and Krumbein phi (Φ) ranges

    Grain size/mmGrain size/μmWentworth classPhi (Φ) range
    1 to 21000 to 2000very coarse sandΦ=–1 to Φ=0
    1/2 to 1500 to 1000coarse sandΦ=0 to Φ=1
    1/4 to 1/2250 to 500medium sandΦ=1 to Φ=2
    1/8 to 1/4125 to 250fine sandΦ=2 to Φ=3
    1/16 to 1/862.5 to 125very fine sandΦ=3 to Φ=4
    1/32 to 1/1631.25 to 62.5coarse siltΦ=4 to Φ=5
    1/64 to 1/3215.625 to 31.25medium siltΦ=5 to Φ=6
    1/128 to 1/647.813 to 15.625fine siltΦ=6 to Φ=7
    1/256 to 1/1283.906 to 7.813very fine siltΦ=7 to Φ=8
    < 1/256< 3.906clayΦ>8
    下载: 导出CSV

    Table  2.   Integer values of sediment metrics in this study corresponding to the intervals of sediment variables from Yuan et al. (2020)

    Ord_PsandSand contentOrd_PclayClay contentOrd_MzMean size (Φ)Ord_SkSkewnessOrd_KtKurtosis
    10 to 10%10 to 5%1Φ<31–2.5 to –1.510.5 to 1.5
    210% to 20%25% to 10%2Φ=3 to Φ=42–1.5 to –0.3321.5 to 2.5
    320% to 30%310% to 15%3Φ=4 to Φ=53–0.33 to 0.3332.5 to 2.75
    430% to 40%415% to 20%4Φ=5 to Φ=640.33 to 1.542.75 to 3
    540% to 50%520% to 25%5Φ=6 to Φ=751.5 to 2.253 to 3.25
    650% to 60%625% to 30%6Φ>762.2 to 3.563.25 to 3.5
    760% to 70%730% to 35% 7> 3.573.5 to 4.5
    870% to 80%835% to 40% 84.5 to 5.5
    9>5.5
    下载: 导出CSV
  • Abo-Hashesh A T, Madkour F F, Sallam W S, et al. 2020. Molecular identification and phylogenetic relationship of Erugosquilla massavensis (Kossmann, 1880) from the Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 24(6): 533–545. doi: 10.21608/ejabf.2020.117576
    Antony P J, Dhanya S, Lyla P S, et al. 2010. Ecological role of stomatopods (mantis shrimps) and potential impacts of trawling in a marine ecosystem of the southeast coast of India. Ecological Modelling, 221(21): 2604–2614. doi: 10.1016/j.ecolmodel.2010.07.017
    Cerasoli F, Besnard A, Marchand M A, et al. 2021. Determinants of habitat suitability models transferability across geographically disjunct populations: Insights from Vipera ursinii ursinii. Ecology and Evolution, 11(9): 3991–4011. doi: 10.1002/ece3.7294
    Chen Tung-Yun, Hwang Gwo-Wen, Mayfield A B, et al. 2017. The relationship between intertidal soil composition and fiddler crab burrow depth. Ecological Engineering, 100: 256–260. doi: 10.1016/j.ecoleng.2016.12.011
    Chen Tung-Yun, Hwang Gwo-Wen, Mayfield A B, et al. 2019. The development of habitat suitability models for fiddler crabs residing in subtropical tidal flats. Ocean & Coastal Management, 182: 104931
    Covich A P, Palmer M A, Crowl T A. 1999. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. Bioscience, 49(2): 119–127. doi: 10.2307/1313537
    DeVries M S, Stock B C, Christy J H, et al. 2016. Specialized morphology corresponds to a generalist diet: linking form and function in smashing mantis shrimp crustaceans. Oecologia, 182(2): 429–442. doi: 10.1007/s00442-016-3667-5
    Ding Qi, Shan Xiujuan, Jin Xianshi, et al. 2020. Research on utilization conflicts of fishery resources and catch allocation methods in the Bohai Sea, China. Fisheries Research, 225: 105477. doi: 10.1016/j.fishres.2019.105477
    Franklin J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge: Cambridge University Press, 181–187
    Georgian S E, Anderson O F, Rowden A A. 2019. Ensemble habitat suitability modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries management in the South Pacific Ocean. Fisheries Research, 211: 256–274. doi: 10.1016/j.fishres.2018.11.020
    Gianguzza P, Insacco G, Zava B, et al. 2019. Much can change in a year: The massawan mantis shrimp, Erugosquilla massavensis (Kossmann, 1880) in sicily, Italy. BioInvasions Records, 8(1): 108–112. doi: 10.3391/bir.2019.8.1.11
    Gollini I, Lu Binbin, Charlton M, et al. 2015. GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software, 63(17): 1–50
    Heikkinen R K, Marmion M, Luoto M. 2012. Does the interpolation accuracy of species distribution models come at the expense of transferability?. Ecography, 35(3): 276–288
    Kim S, Kim H, Bae H, et al. 2017. Growth and reproduction of the Japanese mantis shrimp, Oratosquilla oratoria (De Haan 1844) in the coastal area of Tongyeong, Korea. Ocean Science Journal, 52(2): 257–265. doi: 10.1007/s12601-017-0027-2
    Kodama K, Shimizu T, Yamakawa T, et al. 2006. Changes in reproductive patterns in relation to decline in stock abundance of the Japanese mantis shrimp Oratosquilla oratoria in Tokyo Bay. Fisheries Science, 72(3): 568–577. doi: 10.1111/j.1444-2906.2006.01185.x
    Krumbein W C. 1934. Size Frequency distributions of sediments. Journal of Sedimentary Research, 4(2): 65–77
    Laverock B, Gilbert J A, Tait K, et al. 2011. Bioturbation: Impact on the marine nitrogen cycle. Biochemical Society Transactions, 39(1): 315–320. doi: 10.1042/BST0390315
    Li Bai, Cao Jie, Guan Lisha, et al. 2018. Estimating spatial non-stationary environmental effects on the distribution of species: a case study from American lobster in the Gulf of Maine. ICES Journal of Marine Science, 75(4): 1473–1482. doi: 10.1093/icesjms/fsy024
    Li Mingkun, Zhang Chongliang, Xu Binduo, et al. 2020. A comparison of GAM and GWR in modelling spatial distribution of Japanese mantis shrimp (Oratosquilla oratoria) in coastal waters. Estuarine, Coastal and Shelf Science, 244: 106928
    Liu Haiying, Wang Gui’e, Wang Xiuli. 2009. Genetic diversity analysis of mantis shrimp Oratosquilla oratoria from Dalian coast. Journal of Dalian Fisheries University (in Chinese), 24(4): 350–353
    Lou Fangrui, Gao Tianxiang, Han Zhiqiang. 2019. Effect of salinity fluctuation on the transcriptome of the Japanese mantis shrimp Oratosquilla oratoria. International Journal of Biological Macromolecules, 140: 1202–1213. doi: 10.1016/j.ijbiomac.2019.08.223
    Lu Binbin, Charlton M, Harris P, et al. 2014. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science, 28(4): 660–681. doi: 10.1080/13658816.2013.865739
    Lui K K Y, Leung P T Y, Ng W C, et al. 2010. Genetic variation of Oratosquilla oratoria (Crustacea: Stomatopoda) across Hong Kong waters elucidated by mitochondrial DNA control region sequences. Journal of the Marine Biological Association of the United Kingdom, 90(3): 623–631. doi: 10.1017/S0025315409990841
    Luo Chongxin, Lin Lei, Shi Jie, et al. 2021. Seasonal variations in the water residence time in the Bohai Sea using 3D hydrodynamic model study and the adjoint method. Ocean Dynamics, 71(2): 157–173. doi: 10.1007/s10236-020-01438-5
    Manning R B. 1971. Keys to the species of Oratosquilla (Crustacea, Stomatopoda), with descriptions of two new species. Smithsonian Contributions to Zoology, 1: 1–16
    Maynou F, Abelló P, Sartor P. 2004. A review of the fisheries biology of the mantis shrimp, Squilla mantis (L., 1758) (Stomatopoda, Squillidae) in the Mediterranean. Crustaceana, 77(9): 1081–1099. doi: 10.1163/1568540042900295
    Nakajima M, Kodama K, Horiguchi T, et al. 2010. Impacts of shifts in spawning seasonality and size at maturation on the population growth of mantis shrimp in Tokyo Bay. Marine Ecology Progress Series, 418: 179–188. doi: 10.3354/meps08824
    Ng Yingpei. 2013. The Ecology of Stomatopods in Matang waters with emphasis on Miyakea nepa and Oratosquillina perpensa [dissertation]. Kuala Lumpur: University of Malaya
    Qiao Huijie, Feng Xiao, Escobar L E, et al. 2019. An evaluation of transferability of ecological niche models. Ecography, 42(3): 521–534. doi: 10.1111/ecog.03986
    Ragheb E, Akel E S H K, Rizkalla S I. 2019. Analyses of the non-target catch from the Egyptian Mediterranean trawlers, off Port Said. The Egyptian Journal of Aquatic Research, 45(3): 239–246. doi: 10.1016/j.ejar.2019.07.003
    Reaka M L. 1980. Geographic range, life history patterns, and body size in a guild of coral-dwelling mantis shrimps. Evolution, 34(5): 1019–1030
    Reaka M L, Rodgers P J, Kudla A U. 2008. Patterns of biodiversity and endemism on Indo-West Pacific coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 105(S1): 11474–11481
    Robert K, Jones D O B, Roberts J M, et al. 2016. Improving predictive mapping of deep-water habitats: Considering multiple model outputs and ensemble techniques. Deep-Sea Research Part I: Oceanographic Research Papers, 113: 80–89. doi: 10.1016/j.dsr.2016.04.008
    Tanaka K, Chen Y. 2015. Spatiotemporal variability of suitable habitat for american lobster (Homarus Americanus) in Long Island sound. Journal of Shellfish Research, 34(2): 531–543. doi: 10.2983/035.034.0238
    Tao L S R, Lui K K Y, Lau E T C, et al. 2018. Trawl ban in a heavily exploited marine environment: Responses in population dynamics of four stomatopod species. Scientific Reports, 8(1): 17876. doi: 10.1038/s41598-018-35804-7
    Wang Lei, Qiu Shengrao, Liu Shude, et al. 2020. Morphological difference analysis on three different stocks of Oratosquilla oratoria in the Bohai Sea and the Yellow Sea. Marine Fisheries (in Chinese), 42(6): 672–686
    Wilson J. 2017. Learning, adaptation, and the complexity of human and natural interactions in the ocean. Ecology and Society, 22(2): 43. doi: 10.5751/ES-09356-220243
    Wu Qiang, Guan Lisha, Shan Xiujuan, et al. 2019. Decadal variations in the community status of economically important invertebrates in the Bohai Sea. Acta Oceanologica Sinica, 38(10): 60–66. doi: 10.1007/s13131-019-1488-1
    Xue Ying, Guan Lisha, Tanaka K, et al. 2017. Evaluating effects of rescaling and weighting data on habitat suitability modeling. Fisheries Research, 188: 84–94. doi: 10.1016/j.fishres.2016.12.001
    Yang Jiming. 2001. A study on food and trophic levels of Bohai Sea Invertebrates. Modern Fisheries Information (in Chinese), 16(9): 8–16
    Yang Mei, Li Xinzheng. 2018. Population genetic structure of the mantis shrimp Oratosquilla oratoria (Crustacea: Squillidae) in the Yellow Sea and East China Sea. Journal of Oceanology and Limnology, 36(3): 905–912. doi: 10.1007/s00343-018-7030-z
    Yuan Ping, Wang Houjie, Wu Xiao, et al. 2020. Grain-size distribution of surface sediments in the Bohai Sea and the northern Yellow Sea: sediment supply and hydrodynamics. Journal of Ocean University of China, 19(3): 589–600. doi: 10.1007/s11802-020-4221-y
    Zhang Yang, Han Zhiqiang, Gao Tianxiang, et al. 2018. Genetic structure analysis of mantis shrimp Oratosquilla oratoria based on mitochondrial DNA control region sequence. Genes and Genomics, 40(9): 1001–1009. doi: 10.1007/s13258-018-0707-z
    Zhang Yunlei, Yu Huaming, Yu Haiqing, et al. 2020. Optimization of environmental variables in habitat suitability modeling for mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent waters. Acta Oceanologica Sinica, 39(6): 36–47. doi: 10.1007/s13131-020-1546-8
    Zhao Wenju, Cao Taohong, Dou Pinxin, et al. 2019. Effect of various concentrations of superabsorbent polymers on soil particle-size distribution and evaporation with sand mulching. Scientific Reports, 9(1): 3511. doi: 10.1038/s41598-019-39412-x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  112
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 录用日期:  2022-04-25
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回