Two complete mitogenomes of Ocypodoidea (Decapoda: Brachyura), Cleistostoma dilatatum (Camptandriidae) and Euplax sp. (Macrophthalmidae) and its phylogenetic implications

Ying Zhang Liming Wei Bingjian Liu Liqin Liu Zhenming Lü Li Gong

Ying Zhang, Liming Wei, Bingjian Liu, Liqin Liu, Zhenming Lü, Li Gong. Two complete mitogenomes of Ocypodoidea (Decapoda: Brachyura), Cleistostoma dilatatum (Camptandriidae) and Euplax sp. (Macrophthalmidae) and its phylogenetic implications[J]. Acta Oceanologica Sinica, 2023, 42(4): 81-92. doi: 10.1007/s13131-022-2054-9
Citation: Ying Zhang, Liming Wei, Bingjian Liu, Liqin Liu, Zhenming Lü, Li Gong. Two complete mitogenomes of Ocypodoidea (Decapoda: Brachyura), Cleistostoma dilatatum (Camptandriidae) and Euplax sp. (Macrophthalmidae) and its phylogenetic implications[J]. Acta Oceanologica Sinica, 2023, 42(4): 81-92. doi: 10.1007/s13131-022-2054-9

doi: 10.1007/s13131-022-2054-9

Two complete mitogenomes of Ocypodoidea (Decapoda: Brachyura), Cleistostoma dilatatum (Camptandriidae) and Euplax sp. (Macrophthalmidae) and its phylogenetic implications

More Information
    Corresponding author: E-mail address: gongli1027@163.com, gongli@zjou.edu.cn
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Gene maps of Cleistostoma dilatatum (a) and Euplax sp. (b) mitogenomes. Genes encoded on the heavy or light strands are shown outside or inside the circular gene map, respectively.

    Figure  2.  Amino acid composition in the mitogenome of Cleistostoma dilatatum (a) and Euplax sp. (b); relative synonymous codon usage in the mitogenome of C. dilatatum (c) and Euplax sp. (d). RSCU: relative synonymous codon usage.

    Figure  3.  Genetic distance (on average) and dN/dS substitution rates of 13 PCGs among 19 mitogenomes.

    Figure  4.  Multiple genome alignments of 19 mitogenomes. The mitogenome of Eriocheir sinensis at the top as the reference genome. All genomes are started from the COI gene. The number at the top of each genome shows nucleotide positions. Within each of the alignments, local collinear blocks are represented by blocks of the same color connected by lines.

    Figure  5.  Gene arrangements in Cleistostoma dilatatum (A) and Euplax sp. (B) mitogenome.

    Figure  6.  Inferred intermediate steps between the ancestral gene arrangement of crustaceans and two newly sequenced mitogenomes. The ancestral gene arrangement of crustaceans (A); the results of one tandem duplication and random loss (TDRL) event, the ancestral gene arrangement in Brachyuran mitogenome, and the final gene arrangement in Cleistostoma dilatatum mitogenome (B); the results of two TDRL events, the ancestral gene arrangement in Varunidae and Macrophthalmidae mitogenomes, and the final gene arrangement in Euplax sp. mitogenome (C). The duplicated gene block is underlined and the lost genes are labeled with gray.

    Figure  7.  Phylogenetic tree of brachyuran species inferred from the nucleotide sequences of 13 PCGs based on maximum likelihood (ML) and Bayesian inference (BI) analyses. The node marked with a solid circle indicates 100 ML bootstrap support and 100% BI posterior probability. The numbers after the species name are the GenBank accession number.

    Table  1.   Features of the mitochondrial genome of Cleistostoma dilatatum

    GenePositionLength/bpAmino acidStart/Stop codonAnticodonIntergenic regionStrand
    FromTo
    COI1 bp1534 bp1534511ATG/T 0H
    Leu (L2)1535 bp1599 bp65 TAA6H
    COII1606 bp2293 bp688229ATG/T0H
    Lys (K)2294 bp2363 bp70 TTT0H
    Asp (D)2364 bp2424 bp61 GTC1H
    ATP82426 bp2584 bp15952ATG/TAA –4H
    ATP62581 bp3252 bp672223ATA/TAA –1H
    COIII3252 bp4041 bp790263ATG/T 0H
    Gly (G)4042 bp4105 bp64 TCC–3H
    ND34103 bp4456 bp354117ATT/TAA 4H
    Ala (A)4461 bp4525 bp65 TGC4H
    Arg (R)4530 bp4593 bp64 TCG0H
    Asn (N)4594 bp4662 bp69 GTT0H
    Ser (S1)4663 bp4729 bp67 TCT0H
    Glu (E)4730 bp4795 bp66 TTC2H
    His (H)4798 bp4862 bp65 GTG1L
    Phe (F)4864 bp4928 bp65GAA–1L
    ND54928 bp6643 bp1716571ATT/TAA53L
    ND46697 bp8034 bp1338445ATG/TAA–7L
    ND4L8028 bp8330 bp303100ATG/TAA9L
    Thr (T)8340 bp8405 bp66TGT0H
    Pro (P)8406 bp8470 bp65TGG2L
    ND68473 bp8976 bp504167ATT/TAA–1H
    Cyt b8976 bp10 110 bp1135378ATG/T0H
    Ser (S2)10 111 bp10 177 bp67TGA15H
    ND110 193 bp11 131 bp939312ATA/TAA34L
    Leu (L1)11 166 bp11 232 bp67TAG0L
    16S11 233 bp12 546 bp13140L
    Val (V)12 547 bp12 619 bp73TAC0L
    12S12 620 bp13 435 bp8160L
    CR13 436 bp14 024 bp5890H
    Ile (I)14 025 bp14 090 bp66GAT–3H
    Gln (Q)14 088 bp14 156 bp69TTG8L
    Met (M)14 165 bp14 234 bp70CAT0H
    ND214 235 bp15 245 bp1011336ATT/TAG–2H
    Trp (W)15 244 bp15 315 bp72TCA1H
    Cys (C)15 317 bp15 380 bp64GCA0L
    Tyr (Y)15 381 bp15 444 bp64GTA–1L
    Note: – represents no data.
    下载: 导出CSV

    Table  2.   Features of the mitochondrial genome of Euplax sp.

    GenePositionLength/bpAmino acidStart/Stop codonAnticodonIntergenic regionStrand
    FromTo
    COI1 bp1539 bp1539512ATG/TAA–5H
    Leu (L2)1535 bp1600 bp66TAA8H
    COII1609 bp2296 bp688229ATG/T28H
    ATP82325 bp2486 bp16253ATT/TAA–4H
    ATP62 483 bp3154 bp672223ATA/TAA–1H
    COIII3154 bp3943 bp790263ATG/T0H
    Gly (G)3 944 bp4006 bp63TCC–3H
    ND34004 bp4357 bp354117ATA/TAA1H
    Ala (A)4359 bp4422 bp64TGC1H
    Arg (R)4424 bp4487 bp64TCG0H
    Asn (N)4488 bp4554 bp67GTT0H
    Ser (S1)4555 bp4621 bp67TCT6H
    Thr (T)4 628 bp4689 bp62TGT16H
    Pro (P)4 706 bp4770 bp65TGG10L
    ND14781 bp5707 bp927308ATA/TAG33L
    Leu (L1)5741 bp5807 bp67TAG0L
    16S5808 bp7170 bp13630L
    12S7171 bp8048 bp8780L
    His (H)8 049 bp8113 bp65GTG–1L
    ND58113 bp9813 bp1701566ATG/TAA125L
    Val (V)9939 bp10 011 bp73TAG0L
    CR10 012 bp10 806 bp7950H
    Gln (Q)10 807 bp10 875 bp69TTG7L
    Cys (C)10 883 bp10 944 bp62GCA0L
    Tyr (Y)10 945 bp11 010 bp66GTA37L
    Lys (K)11 048 bp11 116 bp69TTT0H
    Asp (D)11 117 bp11 182 bp66GTC4H
    Glu (E)11 187 bp11 249 bp63TTC–1H
    Phe (F)11 249 bp11 314 bp66GAA7L
    ND411 322 bp12 659 bp1338445ATG/TAA–7L
    ND4L12 653 bp12 955 bp303100ATG/TAA169L
    ND613 125 bp13 649 bp525174ATT/TAA–20H
    Cyt b13 630 bp14 764 bp1135378ATG/T0H
    Ser (S2)14 765 bp14 830 bp66TGA76H
    Ile (I)14 907 bp14 971 bp65GAT2H
    Met (M)14 974 bp15 042 bp69CAT0H
    ND215 043 bp16 053 bp1011336ATG/TAG–2H
    Trp (W)16 052 bp16 121 bp70TCA7H
    Note: – represents no data.
    下载: 导出CSV
  • Akasaki T, Nikaido M, Tsuchiya K, et al. 2006. Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Molecular Phylogenetics and Evolution, 38(3): 648–658. doi: 10.1016/j.ympev.2005.10.018
    Alikhan N F, Petty N K, Ben Zakour N L, et al. 2011. BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12(1): 402. doi: 10.1186/1471-2164-12-402
    Bernt M, Donath A, Jühling F, et al. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2): 313–319. doi: 10.1016/j.ympev.2012.08.023
    Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780. doi: 10.1093/nar/27.8.1767
    Camargo T R, Wolf M R, Mantelatto F L, et al. 2020. Ultrastructure of spermatozoa of members of Calappidae, Aethridae and Menippidae and discussion of their phylogenetic placement. Acta Zoologica, 101(1): 89–100. doi: 10.1111/azo.12273
    Chen Jianqin, Xing Yuhui, Yao Wenjia, et al. 2018. Characterization of four new mitogenomes from Ocypodoidea & Grapsoidea, and phylomitogenomic insights into thoracotreme evolution. Gene, 675: 27–35. doi: 10.1016/j.gene.2018.06.088
    Chen Jianqin, Xing Yuhui, Yao Wenjia, et al. 2019. Phylomitogenomics reconfirm the phylogenetic position of the genus Metaplax inferred from the two grapsid crabs (Decapoda: Brachyura: Grapsoidea). PLoS ONE, 14(1): e0210763. doi: 10.1371/journal.pone.0210763
    Cheryl T G S. 1997. A Revision of the Family Camptandriidae (Crustacea: Decapoda: Brachyura) with Notes on their Ecology. Singapore: National University of Singapore
    Darling A C E, Mau B, Blattner F R, et al. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14(7): 1394–1403. doi: 10.1101/gr.2289704
    Davie P J F. 2002. Crustacea: Malacostraca: Eucarida (Part 2): Decapoda–Anomura, Brachyura. In: Wells A, Houston W W K, eds. Zoological Catalogues of Australia, 19.3B. Melbourne: CSIRO Publishing, 641
    Davie P J F, Guinot D, Ng P K L. 2015a. Phylogeny of Brachyura. In: Castro P, Davie P J F, Guinot D, et al., eds. Treatise on Zoology—Anatomy, Taxonomy, Biology—The Crustacea, Complementary to the Volumes Translated from the French of the Traité de Zoologie, 9(C) (I), Decapoda: Brachyura (Part 2). Leiden: Brill, 921–979
    Davie P J F, Guinot D, Ng P K L. 2015b. Systematics and classification of Brachyura. In: Castro P, Davie P J F, Guinot D, et al., eds. Treatise on Zoology—Anatomy, Taxonomy, Biology—The Crustacea, Complementary to the Volumes Translated from the French of the Traité de Zoologie, 9(C) (I), Decapoda: Brachyura (Part 2). Leiden: Brill, 1049–1130
    Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(4): e18
    Gong Li, Lu Xinting, Luo Hairong, et al. 2020. Novel gene rearrangement pattern in Cynoglossus melampetalus mitochondrial genome: New gene order in genus Cynoglossus (Pleuronectiformes: Cynoglossidae). International Journal of Biological Macromolecules, 149: 1232–1240. doi: 10.1016/j.ijbiomac.2020.02.017
    Jiang Lihua, Kang Lishen, Wu Changwen, et al. 2018. A comprehensive description and evolutionary analysis of 9 Loliginidae mitochondrial genomes. Hydrobiologia, 808(1): 115–124. doi: 10.1007/s10750-017-3377-y
    Jones D A, Clayton D. 1983. The systematics and ecology of crabs belonging to the genera Cleistostoma De Haan and Paracleistostoma De Man on Kuwait Mudflats. Crustaceana, 45(2): 183–199. doi: 10.1163/156854083X00613
    Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587–589. doi: 10.1038/nmeth.4285
    Katoh K, Misawa K, Kuma K I, et al. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14): 3059–3066. doi: 10.1093/nar/gkf436
    Kitaura J, Wada K, Nishida M. 1998. Molecular phylogeny and evolution of unique mud-using territorial behavior in ocypodid crabs (Crustacea: Brachyura: Ocypodidae). Molecular Biology and Evolution, 15(6): 626–637. doi: 10.1093/oxfordjournals.molbev.a025966
    Kitaura J, Wada K, Nishida M. 2002. Molecular phylogeny of grapsoid and ocypodoid crabs with special reference to the genera Metaplax and Macrophthalmus. Journal of Crustacean Biology, 22(3): 682–693. doi: 10.1163/20021975-99990281
    Kumar S, Stecher G, Li M, et al. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547–1549. doi: 10.1093/molbev/msy096
    Lavrov D V, Boore J L, Brown W M. 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Molecular Biology and Evolution, 19(2): 163–169. doi: 10.1093/oxfordjournals.molbev.a004068
    Li Gong, Shi Wei, Si Lizhen, et al. 2013. Rearrangement of mitochondrial genome in fishes. Zoological Research, 34(6): 666–673
    Li Yuetian, Xin Zhaozhe, Tang Yingyu, et al. 2020. Comparative mitochondrial genome analyses of sesarmid and other brachyuran crabs reveal gene rearrangements and phylogeny. Frontiers in Genetics, 11: 536640. doi: 10.3389/fgene.2020.536640
    Liu Qiuning, Xin Zhaozhe, Zhu Xiaoyu, et al. 2017. A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome. Biochemical and Biophysical Research Communications, 489(2): 149–154. doi: 10.1016/j.bbrc.2017.05.115
    Lowe T M, Chan P P. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44(W1): W54–W57. doi: 10.1093/nar/gkw413
    Lu Xinting, Gong Li, Zhang Ying, et al. 2020. The complete mitochondrial genome of Calappa bilineata: The first representative from the family Calappidae and its phylogenetic position within Brachyura. Genomics, 112(3): 2516–2523. doi: 10.1016/j.ygeno.2020.02.003
    Ma Kayan, Qin Jing, Lin Chia-Wei, et al. 2019. Phylogenomic analyses of brachyuran crabs support early divergence of primary freshwater crabs. Molecular Phylogenetics and Evolution, 135: 62–66. doi: 10.1016/j.ympev.2019.02.001
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1): 10–12. doi: 10.14806/ej.17.1.200
    Mclay C L, Kitaura J, Wada K. 2010. Behavioural and molecular evidence for the systematic position of Macrophthalmus (Hemiplax) hirtipes Hombron & Jacquinot, 1846, with comments on macrophthalmine subgenera (Decapoda, Brachyura, Macrophthalmidae). In: Fransen C H J M, De Grave S, Ng P K L, eds. Studies on Malacostraca: Lipke Bijdeley Holthuis Memorial Volume. Leiden: Brill, 483–503
    Mendoza J C E, Ng P K L. 2007. Macrophthalmus (Euplax) H. Milne Edwards, 1852, a Valid Subgenus of Ocypodoid Crab (Decapoda: Brachyura: Macrophthalmidae), with Description of a New Species from the Philippines. Journal of Crustacean Biology, 27(4): 670–680. doi: 10.1651/S-2779.1
    Miura T, Kawane M, Wada K. 2007. A new species of Deiratonotus (Crustacea: Brachyura: Camptandriidae) found in the Kumanoe River Estuary, Kyushu, Japan. Zoological Science, 24(10): 1045–1050. doi: 10.2108/zsj.24.1045
    Moritz C, Brown W M. 1987. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proceedings of the National Academy of Sciences of the United States of America, 84(20): 7183–7187. doi: 10.1073/pnas.84.20.7183
    Moritz C, Dowling T E, Brown W M. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18: 269–292. doi: 10.1146/annurev.es.18.110187.001413
    Naderloo R. 2017a. Family Camptandriidae Stimpson, 1858. In: Naderloo R, ed. Atlas of Crabs of the Persian Gulf. Cham: Springer, 369–378
    Naderloo R. 2017b. Family Macrophthalmidae Dana, 1851 (Sentinel Crabs). In: Naderloo R, ed. Atlas of Crabs of the Persian Gulf. Cham: Springer, 387–403
    Naruse T, Chung A Y C, Tangah J. 2015. Description of a new genus and a new species of the family Camptandriidae Stimpson, 1858 (Crustacea: Decapoda: Brachyura) from Lower Kinabatangan-Segama Wetlands, Sabah, Malaysia. Raffles Bulletin of Zoology, 63: 327–333
    Ng P K L, Guinot D, Davie P J F. 2008. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology, 17(S1): 1–286
    Nguyen L T, Schmidt H A, Von Haeseler A, et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1): 268–274. doi: 10.1093/molbev/msu300
    Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470–474. doi: 10.1038/290470a0
    Perna N T, Kocher T D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution, 41(3): 353–358. doi: 10.1007/BF01215182
    Poulton J, Deadman M E, Bindoff L, et al. 1993. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Human Molecular Genetics, 2(1): 23–30. doi: 10.1093/hmg/2.1.23
    Ronquist F, Teslenko M, Van Der Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542. doi: 10.1093/sysbio/sys029
    Ruan Huiting, Li Min, Li Zhenhai, et al. 2020. Comparative analysis of complete mitochondrial genomes of three Gerres Fishes (Perciformes: Gerreidae) and primary exploration of their evolution history. International Journal of Molecular Sciences, 21(5): 1874. doi: 10.3390/ijms21051874
    Schweitzer C E, Feldmann R M. 2010. The oldest brachyura (Decapoda: Homolodromioidea: Glaessneropsoidea) known to date (Jurassic). Journal of Crustacean Biology, 30(2): 251–256. doi: 10.1651/09-3231.1
    Shi Wei, Miao Xianguang, Kong Xiaoyu. 2014. A novel model of double replications and random loss accounts for rearrangements in the Mitogenome of Samariscus latus (Teleostei: Pleuronectiformes). BMC Genomics, 15(1): 352. doi: 10.1186/1471-2164-15-352
    Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4): 564–577. doi: 10.1080/10635150701472164
    Tan Mun Hua, Gan Hanming, Lee Yinpeng, et al. 2018. ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution, 127: 320–331. doi: 10.1016/j.ympev.2018.05.015
    Trivedi J N, Trivedi D J, Vachharajani K D. 2017. Range extension of brachyuran crabs of the family Camptandriidae Stimpson, 1858 (Crustacea: Decapoda: Brachyura) in Indian waters. Check List, 13(3): 2145. doi: 10.15560/13.3.2145
    Wang Qi, Tang Dan, Guo Huayun, et al. 2020. Comparative mitochondrial genomic analysis of Macrophthalmus pacificus and insights into the phylogeny of the Ocypodoidea & Grapsoidea. Genomics, 112(1): 82–91. doi: 10.1016/j.ygeno.2019.12.012
    Wu Xiangyun, Li Xiaoling, Li Lu, et al. 2012. New features of Asian Crassostrea oyster mitochondrial genomes: a novel alloacceptor tRNA gene recruitment and two novel ORFs. Gene, 507(2): 112–118. doi: 10.1016/j.gene.2012.07.032
    Xie Guanglong, Köhler F, Huang Xiaochen, et al. 2019. A novel gene arrangement among the Stylommatophora by the complete mitochondrial genome of the terrestrial slug Meghimatium bilineatum (Gastropoda, Arionoidea). Molecular Phylogenetics and Evolution, 135: 177–184. doi: 10.1016/j.ympev.2019.03.002
    Yang Ziheng. 2006. Computational Molecular Evolution. Oxford: Oxford University Press, 259–292
    Yang Mei, Dong Dong, Li Xinzheng. 2021. The complete mitogenome of Phymorhynchus sp. (Neogastropoda, Conoidea, Raphitomidae) provides insights into the deep-sea adaptive evolution of Conoidea. Ecology and Evolution, 11(12): 7518–7531. doi: 10.1002/ece3.7582
    Yuan Yang, Li Qi, Yu Hong, et al. 2012. The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS ONE, 7(2): e32353. doi: 10.1371/journal.pone.0032353
    Zhang Ying, Gao Yan, Gong Li, et al. 2021a. Mitochondrial genome of Episesarma lafondii (Brachyura: Sesarmidae) and comparison with other sesarmid crabs. Journal of Ocean University of China, 20(6): 1545–1556. doi: 10.1007/s11802-021-4779-z
    Zhang Dong, Gao Fangluan, Jakovlić I, et al. 2020a. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): 348–355. doi: 10.1111/1755-0998.13096
    Zhang Ying, Gong Li, Lu Xinting, et al. 2020b. Gene rearrangements in the mitochondrial genome of Chiromantes eulimene (Brachyura: Sesarmidae) and phylogenetic implications for Brachyura. International Journal of Biological Macromolecules, 162: 704–714. doi: 10.1016/j.ijbiomac.2020.06.196
    Zhang Ying, Meng Lei, Wei Liming, et al. 2021b. Different gene rearrangements of the genus Dardanus (Anomura: Diogenidae) and insights into the phylogeny of Paguroidea. Scientific Reports, 11(1): 21833. doi: 10.1038/s41598-021-01338-8
    Zhang Zhan, Xing Yuhui, Cheng Jiajia, et al. 2020c. Phylogenetic implications of mitogenome rearrangements in East Asian potamiscine freshwater crabs (Brachyura: Potamidae). Molecular Phylogenetics and Evolution, 143: 106669. doi: 10.1016/j.ympev.2019.106669
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  200
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 录用日期:  2022-06-08
  • 网络出版日期:  2023-02-03
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回