Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery

Sensen Chu Liang Cheng Jian Cheng Xuedong Zhang Jie Zhang Jiabing Chen Jinming Liu

Sensen Chu, Liang Cheng, Jian Cheng, Xuedong Zhang, Jie Zhang, Jiabing Chen, Jinming Liu. Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery[J]. Acta Oceanologica Sinica, 2023, 42(5): 154-165. doi: 10.1007/s13131-022-2065-6
Citation: Sensen Chu, Liang Cheng, Jian Cheng, Xuedong Zhang, Jie Zhang, Jiabing Chen, Jinming Liu. Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery[J]. Acta Oceanologica Sinica, 2023, 42(5): 154-165. doi: 10.1007/s13131-022-2065-6

doi: 10.1007/s13131-022-2065-6

Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery

Funds: The National Natural Science Foundation of China under contract No. 42001401; the China Postdoctoral Science Foundation under contract No. 2020M671431; the Fundamental Research Funds for the Central Universities under contract No. 0209-14380096; the Guangxi Innovative Development Grand Grant under contract No. 2018AA13005.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Procedures of bathymetry method based on a back propagation (BP) neural network and ensemble learning.

    Figure  2.  Procedures of the ensemble strategy based on the minimum outlying degree.

    Figure  3.  Study areas and data for the Anda Reef (a), northeastern Jiuzhang Atoll (b), and Pingtan coastal zone (c).

    Figure  4.  Root-mean-square errors (RMSEs) of 100 repeated experiments of the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods for the Anda Reef (a) northeastern Jiuzhang Atoll (b) and Pingtan coastal zone (c).

    Figure  5.  Bathymetric maps of the three worst results for the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods in the Anda Reef. a–c. Bathymetric maps of the 85th, 31st, and 91st repeated experiments for the BP method. d–f. Bathymetric maps of the 50th, 70th, and 96th repeated experiments for the BPEL method.

    Figure  6.  Scatterplots (estimated depth versus measured depth) of the three worst results for the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods in the Anda Reef. a–c. Scatterplots of the 85th, 31st, and 91st repeated experiments for the BP method. d–f. Scatterplots of the 50th, 70th, and 96th repeated experiments for the BPEL method.

    Figure  7.  Bathymetric maps of the three worst results for the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods in the northeastern Jiuzhang Atoll. a–c. Bathymetric maps of the 57th, 72nd, and 91st repeated experiments for the BP method. d–f. Bathymetric maps of the 96th, 58th, and 8th repeated experiments for the BPEL method.

    Figure  8.  Scatterplots (estimated depth versus measured depth) of the three worst results for the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods in the northeastern Jiuzhang Atoll. a–c. Scatterplots of the 57th, 72nd, and 91st repeated experiments for the BP method. d–f. Scatterplots of the 96th, 58th, and 8th repeated experiments for the BPEL method.

    Figure  9.  Bathymetric maps of the three worst results for the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods in the Pingtan coastal zone. a–c. Bathymetric maps of the 41st, 39th, and 45th repeated experiments for the BP method. d–f. Bathymetric maps of the 43rd, 74th, and 59th repeated experiments for the BPEL method.

    Figure  10.  Scatterplots (estimated depth versus measured depth) of the three worst results for the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods in the Pingtan coastal zone. a–c. Scatterplots of the 41st, 39th, and 45th repeated experiments for the BP method. d–f. Scatterplots of the 43rd, 74th, and 59th repeated experiments for the BPEL method.

    Figure  11.  Effects of the number of training samples on the accuracy of back propagation (BP) and BP neural network and ensemble learning (BPEL) methods. RMSE of bathymetric inversion experiments in the Anda Reef (a), northeastern Jiuzhang Atoll (b), and Pingtan coastal zone (c). Error bars are the standard deviation of the RMSE values.

    Figure  12.  Effects of the number of base learners on the accuracy of BP neural network and ensemble learning (BPEL) methods. RMSE of bathymetric inversion experiments in the Anda Reef (a), northeastern Jiuzhang Atoll (b), and Pingtan coastal zone (c). Error bars are the standard deviation of the RMSE values. The blue point and line in L=1 are the RMSE and error bar of the back propagation (BP) methods.

    Table  1.   Comparison of inversion accuracies (RMSEs) of the three worst results of the back propagation (BP) and BP neural network and ensemble learning (BPEL) methods

    Study area Water
    depth/m
    N BP BPEL
    Worst result Second worst result Third worst result Worst result Second worst result Third worst result
    Anda Reef 0–5 180 1.87 2.17 2.32 1.59 1.58 1.66
    5–10 386 2.99 1.96 1.33 0.92 0.93 0.88
    10–15 324 1.39 1.56 1.65 0.85 0.95 0.89
    15–20 125 5.41 3.56 3.76 1.35 1.20 1.31
    Overall 1 025 2.91 2.22 2.13 1.15 1.14 1.14
    Northeastern
    Jiuzhang Atoll
    0–5 150 5.07 2.73 10.09 0.84 0.77 0.85
    5–10 145 5.84 7.88 2.05 1.73 1.51 1.62
    10–15 73 7.54 7.79 4.02 3.26 2.98 3.42
    15–20 285 3.14 3.08 4.38 2.96 2.52 3.03
    20–25 187 2.98 2.67 4.4 2.27 2.04 2.62
    25–30 181 8.01 7.32 3.49 3.28 3.91 2.48
    Overall 1 021 5.39 5.35 5.33 2.55 2.53 2.53
    Pingtan
    coastal zone
    0–1 104 0.47 0.56 0.26 0.25 0.23 0.21
    1–2 135 1.44 0.47 0.29 0.20 0.22 0.15
    2–3 181 0.92 0.82 0.27 0.26 0.21 0.24
    3–4 256 0.37 0.69 0.39 0.27 0.31 0.35
    4–5 209 1.27 0.83 1.13 0.41 0.41 0.36
    Overall 885 0.96 0.81 0.76 0.31 0.31 0.30
    Note: N represents the number of test samples.
    下载: 导出CSV
  • Andréfouët S, Kramer P, Torres-Pulliza D, et al. 2003. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 88(1–2): 128–143,
    Andrejev O, Soomere T, Sokolov A, et al. 2011. The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia, 53(S1): 309–334. doi: 10.5697/oc.53-1-TI.309
    Benardos P G, Vosniakos G C. 2007. Optimizing feedforward artificial neural network architecture. Engineering Applications of Artificial Intelligence, 20(3): 365–382. doi: 10.1016/j.engappai.2006.06.005
    Cao Bincai, Fang Yong, Gao Li, et al. 2021. An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery. International Journal of Remote Sensing, 42(8): 2783–2806. doi: 10.1080/01431161.2020.1862441
    Casal G, Monteys X, Hedley J, et al. 2019. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. International Journal of Remote Sensing, 40(8): 2855–2879. doi: 10.1080/01431161.2018.1533660
    Ceyhun Ö, Yalçın A. 2010. Remote sensing of water depths in shallow waters via artificial neural networks. Estuarine, Coastal and Shelf Science, 89(1): 89–96,
    Chu Sensen, Cheng Liang, Ruan Xiaoguang, et al. 2019. Technical framework for shallow-water bathymetry with high reliability and no missing data based on time-series Sentinel-2 images. IEEE Transactions on Geoscience and Remote Sensing, 57(11): 8745–8763. doi: 10.1109/TGRS.2019.2922724
    Collin A, Etienne S, Feunteun E. 2017. VHR coastal bathymetry using WorldView-3: colour versus learner. Remote Sensing Letters, 8(11): 1072–1081. doi: 10.1080/2150704X.2017.1354261
    Deng Ying, Zhou Xiaoling, Shen Jiao, et al. 2021. New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water. Science of The Total Environment, 772: 145534. doi: 10.1016/j.scitotenv.2021.145534
    El-Mewafi M, Salah M, Fawzi B. 2018. Assessment of optical satellite images for bathymetry estimation in shallow areas using artificial neural network model. Journal of Geographic Information System, 7(4): 99–106. doi: 10.5923/j.ajgis.20180704.01
    Gholamalifard M, Kutser T, Esmaili-Sari A, et al. 2013. Remotely sensed empirical modeling of bathymetry in the southeastern Caspian Sea. Remote Sensing, 5(6): 2746–2762. doi: 10.3390/rs5062746
    Guo Hengliang, Yang Hong, Qiao Baojin, et al. 2021. Multi-resolution satellite images bathymetry inversion of Bangda Co in the western Tibetan Plateau. International Journal of Remote Sensing, 42(21): 8077–8098. doi: 10.1080/01431161.2021.1970271
    Hirose Y, Yamashita K, Hijiya S. 1991. Back-propagation algorithm which varies the number of hidden units. Neural Networks, 4(1): 61–66. doi: 10.1016/0893-6080(91)90032-Z
    Huang Rongyong, Yu Kefu, Wang Yinghui, et al. 2017. Bathymetry of the coral reefs of Weizhou Island based on multispectral satellite images. Remote Sensing, 9(7): 750. doi: 10.3390/rs9070750
    Hussein H M, Nadaoka K. 2017. Assessment of machine learning approaches for bathymetry mapping in shallow water environments using multispectral satellite images. International Journal of Geoinformatics, 13(2): 1–15
    Islam M M, Yao Xin, Murase K. 2003. A constructive algorithm for training cooperative neural network ensembles. IEEE Transactions on Neural Networks, 14(4): 820–834. doi: 10.1109/TNN.2003.813832
    Kim J S, Baek D, Seo II W, et al. 2019. Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method. Geomorphology, 341: 102–114. doi: 10.1016/j.geomorph.2019.05.016
    Lee Zhongping, Carder K L, Mobley C D, et al. 1998. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics, 37(27): 6329–6338. doi: 10.1364/AO.37.006329
    Lee Y, Oh S H, Kim M W. 1993. An analysis of premature saturation in back propagation learning. Neural Networks, 6(5): 719–728. doi: 10.1016/S0893-6080(05)80116-9
    Leon J X, Cohen T J. 2012. An improved bathymetric model for the modern and Palaeo Lake Eyre. Geomorphology, 173–174: 69–79,
    Li Jing, Cheng Jihang, Shi Jingyuan, et al. 2012. Brief introduction of back propagation (BP) neural network algorithm and its improvement. In: Jin D, Lin S, eds. Advances in Computer Science and Information Engineering. Berlin: Springer, 553–558,
    Liang Jian, Zhang Jie, Ma Yi. 2017. A spatial resolution effect analysis of remote sensing bathymetry. Acta Oceanologica Sinica, 36(7): 102–109. doi: 10.1007/s13131-017-1088-x
    Liu Shan, Gao Yong, Zheng Wenfeng, et al. 2015. Performance of two neural network models in bathymetry. Remote Sensing Letters, 6(4): 321–330. doi: 10.1080/2150704X.2015.1034885
    Liu Shan, Wang Lei, Liu Hongxing, et al. 2018. Deriving bathymetry from optical images with a localized neural network algorithm. IEEE Transactions on Geoscience and Remote Sensing, 56(9): 5334–5342. doi: 10.1109/TGRS.2018.2814012
    Lyzenga D R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17(3): 379–383. doi: 10.1364/ao.17.000379
    Lyzenga D R. 1985. Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 6(1): 115–125. doi: 10.1080/01431168508948428
    Ma Yue, Xu Nan, Liu Zhen, et al. 2020. Satellite-derived bathymetry using the ICESat-2 lidar and sentinel-2 imagery datasets. Remote Sensing of Environment, 250: 112047. doi: 10.1016/j.rse.2020.112047
    Manessa M D M, Kanno A, Sagawa T, et al. 2018. Simulation-based investigation of the generality of Lyzenga’s multispectral bathymetry formula in Case-1 coral reef water. Estuarine, Coastal and Shelf Science, 200: 81–90,
    Melet A, Teatini P, Le Cozannet G, et al. 2020. Earth observations for monitoring marine coastal hazards and their drivers. Surveys in Geophysics, 41(6): 1489–1534. doi: 10.1007/s10712-020-09594-5
    Polcyn F C. 1976. NASA/Cousteau ocean bathymetry experiment. NASA CR-ERIM 118500-l-F. Ann Arbor, MI: Environmental Research Institute of Michigan
    Qiu Luo, Zhang Dexian, Huang Hao, et al. 2018. BP artificial neural network and its application based on LM algorithm. NeuroQuantology, 16(6): 598–605. doi: 10.14704/nq.2018.16.6.1566
    Rumelhart D E, McClelland J L. 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press
    Sandidge J C, Holyer R J. 1998. Coastal bathymetry from hyperspectral observations of water radiance. Remote Sensing of Environment, 65(3): 341–352. doi: 10.1016/S0034-4257(98)00043-1
    Stumpf R P, Holderied K, Sinclair M. 2003. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1): 547–556. doi: 10.4319/lo.2003.48.1_part_2.0547
    Sun Minxuan, Yu Linjun, Zhang Ping, et al. 2021. Coastal water bathymetry for critical zone management using regression tree models from Gaofen-6 imagery. Ocean & Coastal Management, 204: 105522. doi: 10.1016/j.ocecoaman.2021.105522
    Wang Yanhong, Zhou Xinghua, Li Cong, et al. 2020. Bathymetry model based on spectral and spatial multifeatures of remote sensing image. IEEE Geoscience and Remote Sensing Letters, 17(1): 37–41. doi: 10.1109/LGRS.2019.2915122
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  139
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 录用日期:  2022-06-12
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回