Phytoplanktonic biogeography in the subtropical coastal waters, East China Sea along intensive anthropogenic stresses: roles of environmental versus spatial factors

Ran Ye Haibo Zhang Yige Yu Qing Xu Dandi Shen Min Ren Lian Liu Yanhong Cai

Ran Ye, Haibo Zhang, Yige Yu, Qing Xu, Dandi Shen, Min Ren, Lian Liu, Yanhong Cai. Phytoplanktonic biogeography in the subtropical coastal waters, East China Sea along intensive anthropogenic stresses: roles of environmental versus spatial factors[J]. Acta Oceanologica Sinica, 2023, 42(4): 103-113. doi: 10.1007/s13131-022-2086-1
Citation: Ran Ye, Haibo Zhang, Yige Yu, Qing Xu, Dandi Shen, Min Ren, Lian Liu, Yanhong Cai. Phytoplanktonic biogeography in the subtropical coastal waters, East China Sea along intensive anthropogenic stresses: roles of environmental versus spatial factors[J]. Acta Oceanologica Sinica, 2023, 42(4): 103-113. doi: 10.1007/s13131-022-2086-1

doi: 10.1007/s13131-022-2086-1

Phytoplanktonic biogeography in the subtropical coastal waters, East China Sea along intensive anthropogenic stresses: roles of environmental versus spatial factors

Funds: Ecological Restoration Cost Evaluation in Archipelago Ecosystems: A Case Study in Putuo, Zhoushan Archipelago, East China Sea.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sampling sites in the coastal waters of northern Zhejiang comprised of Hangzhou Bay (HZB), Zhoushan Islands (ZSI), island chain (IC), Xiangshan Bay (XSB) and Sanmen Bay (SMB) over four seasons.

    Figure  2.  Seasonal phytoplankton community composition dynamics across sampling area.

    Figure  3.  Principal coordinate analysis (PCoA) plots of the whole community (a, d), the dominant community (b, e) and rare community (c, f) with one-way analysis of similarity (ANOSIM) visualize both seasonal (a−c) and spatial (d−f) dissimilarities. HZB: Hangzhou Bay; IC: island chain; SMB: Sanmen Bay; XSB: Xiangshan Bay; ZSI: Zhoushan Islands.

    Figure  4.  Heat maps illustrated Spearman’s rank correlations between seasonal dominant species and environmental parameters. WT: water temperature; Sal: salinity; TOC: total organic carbon; SPM: suspended particulate matter; TN: total nitrogen; COD: chemical oxygen demand; TP: total phosphorus; con. is the abbrevation of concentration.

    Figure  5.  Correlation between the whole community similarity (Bray-Curtis distance) and geographic distance between sampling sites within the four seasons. Red lines represent linear fits.

    Figure  6.  Variation partitioning analysis of the whole species community within each season performed on environmental factors (Env) and spatial factors including linear trend variables (Trend) and principal coordinates of neighbour matrices (PCNM) variables. Values less than 0 were not shown.

    Table  1.   Distance-based multivariate linear model against seawater chemical variables of the whole community in all the seasons

    Marginal tests
    VariablePseudo-FPPercent variation explained
    WT44.4580.00115.24
    DO concentration18.9320.0017.09
    pH12.0620.0014.64
    SPM concentration11.1420.0014.30
    $\bf {PO_4^{3-}} $ concentration6.0770.0012.39
    COD5.8360.0012.30
    TP concentration3.8090.0011.51
    Sal3.7280.0031.48
    $\bf SiO_3^{2-} $ concentration3.4610.0031.38
    TN concentration3.2110.0021.28
    $\bf NO^-_3 $ concentration3.0480.0051.21
    $\bf NH_4^+ $ concentration2.9300.0051.17
    TOC concentration1.7150.0690.69
    $\bf NO_2^- $ concentration1.4810.1360.59
    Sequential tests
    VariablePseudo-FPCumulative variation explained
    WT44.5860.00115.24
    DO concentration24.8230.00122.98
    $\bf {PO_4^{3-}} $ concentration6.1380.00124.85
    Sal3.5440.00125.93
    $\bf SiO_3^{2-} $ concentration2.7350.00226.75
    $\bf NO^-_3 $ concentration2.5650.00327.51
    TN concentration3.0770.00128.42
    $\bf NH_4^+ $ concentration2.5290.00729.16
    pH2.3890.00929.86
    TOC concentration2.2580.01530.52
    COD2.0750.02231.12
    TP concentration1.8050.05531.64
    SPM concentration1.3300.19732.02
    $\bf NO_2^- $ concentration0.0060.76232.21
    Note: Variables in bold referred to statistically significant (P<0.05). WT: water temperature; SPM: suspended particulate matter; COD: chemical oxygen demand; Sal: salinity; TOC: total organic carbon; TN: total nitrogen; TP: total phosphorus; Pseudo-F: Pseudo-F Statistics test value.
    下载: 导出CSV

    Table  2.   Mantel tests showed Spearman’s rank correlations of the whole community in relation to geographic distance within the four seasons

    SeasonVariation sourceSimple Mantel testControlled byPartial Mantel test
    $\rho $P$\rho $P
    SpringGeo0.326<0.001Env0.331<0.001
    SummerGeo0.252<0.001Env0.253<0.001
    AutumnGeo0.370<0.001Env0.373<0.001
    WinterGeo0.206<0.001Env0.231<0.001
    Note: Geo: geographic distance; Env: environmental factors as a whole; $\rho $: correlation coefficients between pairwise distance of the whole community distance and geographic distance derived from Mantel test with 9 999 permutations.
    下载: 导出CSV
  • Anderson M J. 2003. DISTLM forward: a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model using forward selection [dissertation]. New Zealand: University of Auckland
    Astorga A, Oksanen J, Luoto M, et al. 2012. Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules?. Global Ecology and Biogeography, 21(3): 365–375
    Blanchet F G, Legendre P, Borcard D. 2008. Forward selection of explanatory variables. Ecology, 89(9): 2623–2632. doi: 10.1890/07-0986.1
    Borcard D, Legendre P. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153(1–2): 51–68
    Borcard D, Legendre P, Avois-Jacquet C, et al. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85(7): 1826–1832. doi: 10.1890/03-3111
    Borcard D, Legendre P, Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology, 73(3): 1045–1055. doi: 10.2307/1940179
    Brewin R J W, Sathyendranath S, Jackson T, et al. 2015. Influence of light in the mixed-layer on the parameters of a three-component model of phytoplankton size class. Remote Sensing of Environment, 168: 437–450. doi: 10.1016/j.rse.2015.07.004
    Brunet C, Conversano F, Margiotta F, et al. 2013. Role of light and photophysiological properties on phytoplankton succession during the spring bloom in the north-western Mediterranean Sea. Advances in Oceanography and Limnology, 4(1): 1–19. doi: 10.4081/aiol.2013.5334
    Carstensen J, Klais R, Cloern J E. 2015. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuarine, Coastal and Shelf Science, 162: 98–109
    Chase J M, Myers J A. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576): 2351–2363. doi: 10.1098/rstb.2011.0063
    Chust G, Irigoien X, Chave J, et al. 2013. Latitudinal phytoplankton distribution and the neutral theory of biodiversity. Global Ecology and Biogeography, 22(5): 531–543. doi: 10.1111/geb.12016
    Cloern J E, Dufford R. 2005. Phytoplankton community ecology: principles applied in San Francisco Bay. Marine Ecology Progress Series, 285: 11–28. doi: 10.3354/meps285011
    Conde A, Hurtado M, Prado M. 2018. Phytoplankton response to a weak El Niño event. Ecological Indicators, 95: 394–404. doi: 10.1016/j.ecolind.2018.07.064
    Cottenie K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8(11): 1175–1182. doi: 10.1111/j.1461-0248.2005.00820.x
    Dray S, Legendre P, Peres-Neto P R. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196(3–4): 483–493
    Dupuis A P, Hann B J. 2009. Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton. Journal of Plankton Research, 31(5): 489–502. doi: 10.1093/plankt/fbp001
    Field C B, Behrenfeld M J, Randerson J T, et al. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374): 237–240. doi: 10.1126/science.281.5374.237
    Fragoso G M, Poulton A J, Yashayaev I M, et al. 2016. Biogeographical patterns and environmental controls of phytoplankton communities from contrasting hydrographical zones of the Labrador Sea. Progress in Oceanography, 141: 212–226. doi: 10.1016/j.pocean.2015.12.007
    Gao Shengquan, Yu Guohui, Wang Yuhen. 1993. Distributional features and fluxes of dissolved nitrogen, phosphorus and silicon in the Hangzhou Bay. Marine Chemistry, 43(1–4): 65–81
    Gasiūnaitė Z R, Cardoso A C, Heiskanen A S, et al. 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuarine, Coastal and Shelf Science, 65(1–2): 239–252
    Harding L W Jr, Mallonee M E, Perry E S, et al. 2016. Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay. Scientific Reports, 6: 23773. doi: 10.1038/srep23773
    Harrison P J, Hu M H, Yang Y P, et al. 1990. Phosphate limitation in estuarine and coastal waters of China. Journal of Experimental Marine Biology and Ecology, 140(1–2): 79–87
    Heino J, Melo A S, Siqueira T, et al. 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology, 60(5): 845–869. doi: 10.1111/fwb.12533
    Hinga K R. 2002. Effects of pH on coastal marine phytoplankton. Marine Ecology Progress Series, 238: 281–300. doi: 10.3354/meps238281
    Horváth Z, Vad C F, Ptacnik R. 2016. Wind dispersal results in a gradient of dispersal limitation and environmental match among discrete aquatic habitats. Ecography, 39(8): 726–732. doi: 10.1111/ecog.01685
    Inspection and Quarantine of the People’s Republic of China, Standardization Administration. 2008a. GB 17378.3-2007 The specification for marine monitoring—part 3: sample collection storage and transportation. Beijing: Standards Press of China
    Inspection and Quarantine of the People’s Republic of China, Standardization Administration. 2008b. GB 17378.4-2007 The specification for marine monitoring—part 4: seawater analysis. Beijing: Standards Press of China
    Inspection and Quarantine of the People’s Republic of China, Standardization Administration. 2008c. GB 17378.7-2007 The specification for marine monitoring—part 7: ecological survey for offshore pollution and biological monitoring. Beijing: Standards Press of China
    Jiang Zhibing, Chen Quanzhen, Zeng Jiangning, et al. 2012. Phytoplankton community distribution in relation to environmental parameters in three aquaculture systems in a Chinese subtropical eutrophic bay. Marine Ecology Progress Series, 446: 73–89. doi: 10.3354/meps09499
    Jiang Zhibing, Chen Jianfang, Zhou Feng, et al. 2015. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Continental Shelf Research, 101: 71–84. doi: 10.1016/j.csr.2015.04.009
    Jiang Zhibing, Liao Yibo, Liu Jingjing, et al. 2013. Effects of fish farming on phytoplankton community under the thermal stress caused by a power plant in a eutrophic, semi-enclosed bay: induce toxic dinoflagellate (Prorocentrum minimum) blooms in cold seasons. Marine Pollution Bulletin, 76(1–2): 315–324
    Jiang Zhibing, Liu Jingjing, Chen Jianfang, et al. 2014. Responses of summer phytoplankton community to drastic environmental changes in the Changjiang (Yangtze River) Estuary during the past 50 years. Water Research, 54: 1–11. doi: 10.1016/j.watres.2014.01.032
    Keck F, Franc A, Kahlert M. 2018. Disentangling the processes driving the biogeography of freshwater diatoms: a multiscale approach. Journal of Biogeography, 45(7): 1582–1592. doi: 10.1111/jbi.13239
    Liebhold M A, Gurevitch J. 2002. Integrating the statistical analysis of spatial data in ecology. Ecography, 25(5): 553–557. doi: 10.1034/j.1600-0587.2002.250505.x
    Liebhold M A, Holyoak M, Mouquet N, et al. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7): 601–613. doi: 10.1111/j.1461-0248.2004.00608.x
    Litchman E, de Tezanos Pinto P, Edwards K F, et al. 2015. Global biogeochemical impacts of phytoplankton: a trait-based perspective. Journal of Ecology, 103(6): 1384–1396. doi: 10.1111/1365-2745.12438
    Liu Qiang, Liao Yibo, Shou Lu. 2018. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Marine Pollution Bulletin, 131: 356–364. doi: 10.1016/j.marpolbul.2018.04.041
    Macintyre H L, Kana T M, Anning T, et al. 2002. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology, 38(1): 17–38. doi: 10.1046/j.1529-8817.2002.00094.x
    Maloney K O, Munguia P. 2011. Distance decay of similarity in temperate aquatic communities: effects of environmental transition zones, distance measure, and life histories. Ecography, 34(2): 287–295. doi: 10.1111/j.1600-0587.2010.06518.x
    Martiny J B H, Bohannan B J M, Brown J H, et al. 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 4(2): 102–112. doi: 10.1038/nrmicro1341
    McQuoid M R. 2005. Influence of salinity on seasonal germination of resting stages and composition of microplankton on the Swedish west coast. Marine Ecology Progress Series, 289: 151–163. doi: 10.3354/meps289151
    Moritz C, Meynard C N, Devictor V, et al. 2013. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos, 122(10): 1401–1410
    Mousing E A, Richardson K, Bendtsen J, et al. 2016. Evidence of small-scale spatial structuring of phytoplankton alpha- and beta-diversity in the open ocean. Journal of Ecology, 104(6): 1682–1695. doi: 10.1111/1365-2745.12634
    Peres-Neto P R, Legendre P, Dray S, et al. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87(10): 2614–2625. doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2
    Philippart C J M, Cadee G C, van Raaphorst W, et al. 2000. Long-term phytoplankton-nutrient interactions in a shallow coastal sea: algal community structure, nutrient budgets, and denitrification potential. Limnology and Oceanography, 45(1): 131–144. doi: 10.4319/lo.2000.45.1.0131
    Polikarpov I, Saburova M, Al-Yamani F. 2016. Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman. Continental Shelf Research, 119: 85–99. doi: 10.1016/j.csr.2016.03.009
    Reed M L, Pinckney J L, Keppler C J, et al. 2016. The influence of nitrogen and phosphorus on phytoplankton growth and assemblage composition in four coastal, southeastern USA systems. Estuarine, Coastal and Shelf Science, 177: 71–82
    Ribeiro K F, da Rocha C M, de Castro D, et al. 2018. Distribution and coexistence patterns of phytoplankton in subtropical shallow lakes and the role of niche-based and spatial processes. Hydrobiologia, 814(1): 233–246. doi: 10.1007/s10750-018-3539-6
    Roelke D L, Gable G M, Valenti T W, et al. 2010. Hydraulic flushing as a Prymnesium parvum bloom-terminating mechanism in a subtropical lake. Harmful Algae, 9(3): 323–332. doi: 10.1016/j.hal.2009.12.003
    Rothenberger M B, Burkholder J M, Wentworth T R. 2009. Use of long-term data and multivariate ordination techniques to identify environmental factors governing estuarine phytoplankton species dynamics. Limnology and Oceanography, 54(6): 2107–2127. doi: 10.4319/lo.2009.54.6.2107
    Shannon C E, Weaver V. 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press, 1–25
    Shi Tuo, Kong Jie, Liu Ping, et al. 2000. Nutrient limitation of phytoplankton in the Changjiang Estuary—1. Condition of nutrient limitation in autumn. Haiyang Xuebao (in Chinese), 22(4): 60–66
    Soininen J. 2012. Macroecology of unicellular organisms-patterns and processes. Environmental Microbiology Reports, 4(1): 10–22. doi: 10.1111/j.1758-2229.2011.00308.x
    Soininen J, Jamoneau A, Rosebery J, et al. 2016. Global patterns and drivers of species and trait composition in diatoms. Global Ecology and biogeography, 25(8): 940–950. doi: 10.1111/geb.12452
    Vilmi A, Karjalainen S M, Hellsten S, et al. 2016. Bioassessment in a metacommunity context: are diatom communities structured solely by species sorting?. Ecological Indicators, 62: 86–94
    Wang Kai, Ye Xiansen, Chen Heping, et al. 2015. Bacterial biogeography in the coastal waters of northern Zhejiang, East China Sea is highly controlled by spatially structured environmental gradients. Environmental Microbiology, 17(10): 3898–3913. doi: 10.1111/1462-2920.12884
    Yang Yang, Niu Haiyu, Xiao Lijuan, et al. 2018a. Spatial heterogeneity of spring phytoplankton in a large tropical reservoir: could mass effect homogenize the heterogeneity by species sorting?. Hydrobiologia, 819(1): 109–122
    Yang Wen, Zheng Zhongming, Zheng Cheng, et al. 2018b. Temporal variations in a phytoplankton community in a subtropical reservoir: an interplay of extrinsic and intrinsic community effects. Science of the Total Environment, 612: 720–727. doi: 10.1016/j.scitotenv.2017.08.044
    Ye Ran, Liu Lian, Wang Qiong, et al. 2017. Identification of coastal water quality by multivariate statistical techniques in two typical bays of northern Zhejiang Province, East China Sea. Acta Oceanologica Sinica, 36(2): 1–10. doi: 10.1007/s13131-017-0981-7
    Zhang Min, Chen Feizhou, Shi Xiaoli, et al. 2018a. Association between temporal and spatial beta diversity in phytoplankton. Ecography, 41(8): 1345–1356. doi: 10.1111/ecog.03340
    Zhang Huajun, Hang Xiaolin, Huang Lei, et al. 2018b. Microeukaryotic biogeography in the typical subtropical coastal waters with multiple environmental gradients. Science of the Total Environment, 635: 618–628. doi: 10.1016/j.scitotenv.2018.04.142
    Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28(12): 1483–1489. doi: 10.1016/j.csr.2007.02.009
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  96
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 录用日期:  2022-06-24
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回