Sedimentary nitrogen dynamics in a coastal reef area with relatively high nitrogen concentration

Zhiming Ning Ronglin Xia Bin Yang Cao Fang Wei Jiang Guodong Song

Zhiming Ning, Ronglin Xia, Bin Yang, Cao Fang, Wei Jiang, Guodong Song. Sedimentary nitrogen dynamics in a coastal reef area with relatively high nitrogen concentration[J]. Acta Oceanologica Sinica, 2023, 42(4): 33-40. doi: 10.1007/s13131-022-2088-z
Citation: Zhiming Ning, Ronglin Xia, Bin Yang, Cao Fang, Wei Jiang, Guodong Song. Sedimentary nitrogen dynamics in a coastal reef area with relatively high nitrogen concentration[J]. Acta Oceanologica Sinica, 2023, 42(4): 33-40. doi: 10.1007/s13131-022-2088-z

doi: 10.1007/s13131-022-2088-z

Sedimentary nitrogen dynamics in a coastal reef area with relatively high nitrogen concentration

Funds: The Guangxi Natural Science Foundation under contract Nos 2019GXNSFAA185001 and 2019GXNSFAA185022; the National Natural Science Foundation of China under contract Nos 41976059 and 42166002.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Sampling stations in the tidal flats (the black areas) around Weizhou Island. The dark grey areas are coral covering areas. I1−I5 are the station IDs.

    Figure  2.  Fluxes of different N forms at the seawater-sediment interface of different stations at Weizhou Island during September 2019.

    Figure  3.  Relationship between ${\rm{NO}}_3^- $ flux and ${\rm{NO}}_3^- $ concentration in the influent seawater of flow-through reactor. Dashed lines represent 95% confidence intervals.

    Figure  4.  Fluxes of DON (a), ${\rm{NO}}_3^- $ (b), and ${\rm{NH}}_4^+ $(c) under variable TOC contents.

    Figure  5.  Fluxes (isoline, mmol/(m2·h)) of ${\rm{NO}}_3^- $ (a), ${\rm{NH}}_4^+ $ (b), and DON (c) under different advection conditions.

    Figure  6.  Fluxes of DON (a), ${\rm{NH}}_4^+ $ (b), and ${\rm{NO}}_3^- $ (c) under variable temperature conditions.

    Table  1.   Summary of conditions in flow-through reactor experiment

    ExperimentTemperature/℃${\rm{NO}}_3^- $/(μmol·L–1)TOC contentAdvection rate/(mL·min–1)Column length/cm
    1− Station26see Table 20.03%±0.01%110
    2− ${\rm{NO} }_3^- $ concentration261, 4, 10, 30, 450.05%110
    3− TOC concentration2625±50.05%, 0.14%, 0.22%110
    4− Advection rate and flow path length2645±50.05%0.5, 1, 2, 35, 10, 15, 20
    5− Temperature20, 26, 3210±50.05%110
    Note: The variable parameters are indicated in bold.
    下载: 导出CSV

    Table  2.   Nutrient concentrations in overlying seawater and porewater in sediments, and total nitrogen (TN) content in bulk sediments

    StationSeawaterPorewaterSediment
    ${{\rm {NH}}_4^+} $/ (μmol·L−1)${{\rm {NO}}_2^-} $/ (μmol·L−1)${\rm{NO}}_3^- $/ (μmol·L−1)DIP/ (μmol·L−1)${\rm{NH}}_4^+ $/ (μmol·L−1)${\rm{NO}}_2^- $/ (μmol·L−1)${\rm{NO}}_3^- $/ (μmol·L−1)DIP/ (μmol·L−1)TN (dry weight)/ (μmol·g−1)
    I10.700.334.360.026.723.166.760.462.90
    I20.810.339.950.088.642.54214.030.543.34
    I31.140.301.440.08113.280.810.430.544.28
    I41.270.325.040.1514.753.9448.800.501.25
    I52.020.469.280.43156.031.290.560.692.47
    下载: 导出CSV

    Table  3.   Correlation analysis results for ${\rm{NO}}_3^- $ and DIP concentrations in seawater and the TN in sediments and fluxes of DO, N2, DIN, and DON obtained from the first FTR experiment

    ${\rm{NO}}_3^- $ concentrationDIP concentrationTN concentrationDO fluxN2 fluxDIN flux
    DIP concentration0.23
    TN concentration0.22−0.02
    DO flux−0.050.13−0.45*
    N2 flux−0.72*0.010.05−0.04
    DIN flux−0.65*0.34−0.060.180.47*
    DON flux0.340.92*0.000.17−0.200.34
    Note: * correlation is significant at the 0.05 level, n=20.
    下载: 导出CSV
  • Alongi D M, Trott L A, Pfitzner J. 2008. Biogeochemistry of inter-reef sediments on the northern and central Great Barrier Reef. Coral Reefs, 27(2): 407–420. doi: 10.1007/s00338-007-0347-2
    Baird M E, Mongin M, Rizwi F, et al. 2021. The effect of natural and anthropogenic nutrient and sediment loads on coral oxidative stress on runoff-exposed reefs. Marine Pollution Bulletin, 168: 112409. doi: 10.1016/j.marpolbul.2021.112409
    Canion A, Kostka J E, Gihring T M, et al. 2014. Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude. Biogeosciences, 11(2): 309–320. doi: 10.5194/bg-11-309-2014
    Cook P L M, Kessler A J, Eyre B D. 2017. Does denitrification occur within porous carbonate sand grains?. Biogeosciences, 14(18): 4061–4069
    Deek A, Emeis K, van Beusekom J. 2012. Nitrogen removal in coastal sediments of the German Wadden Sea. Biogeochemistry, 108(1–3): 467–483
    Eakin C M, Sweatman H P A, Brainard R E. 2019. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs, 38(4): 539–545. doi: 10.1007/s00338-019-01844-2
    El-Khaled Y C, Roth F, Rädecker N, et al. 2021. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs. Scientific Reports, 11(1): 11820. doi: 10.1038/s41598-021-90204-8
    Erler D V, Santos I R, Eyre B D. 2014. Inorganic nitrogen transformations within permeable carbonate sands. Continental Shelf Research, 77: 69–80. doi: 10.1016/j.csr.2014.02.002
    Eyre B D, Glud R N, Patten N. 2008. Mass coral spawning: a natural large-scale nutrient addition experiment. Limnology and Oceanography, 53(3): 997–1013. doi: 10.4319/lo.2008.53.3.0997
    Guo Jing, Yu Kefu, Wang Yinghui, et al. 2019. Potential impacts of anthropogenic nutrient enrichment on coral reefs in the South China Sea: evidence from nutrient and chlorophyll a levels in seawater. Environmental Science: Processes & Impacts, 21(10): 1745–1753
    Hughes T P, Baird A H, Bellwood D R, et al. 2003. Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635): 929–933. doi: 10.1126/science.1085046
    Hughes T P, Kerry J T, Álvarez-Noriega M, et al. 2017. Global warming and recurrent mass bleaching of corals. Nature, 543(7645): 373–377. doi: 10.1038/nature21707
    Jäntti H, Stange F, Leskinen E, et al. 2011. Seasonal variation in nitrification and nitrate-reduction pathways in coastal sediments in the Gulf of Finland, Baltic Sea. Aquatic Microbial Ecology, 63(2): 171–181. doi: 10.3354/ame01492
    Jiang Shan, Kavanagh M, Ibánhez J S P, et al. 2021. Denitrification-nitrification process in permeable coastal sediments: an investigation on the effect of salinity and nitrate availability using flow-through reactors. Acta Oceanologica Sinica, 40(9): 1–12. doi: 10.1007/s13131-021-1811-5
    Kawasaki N, Benner R. 2006. Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnology and Oceanography, 51(5): 2170–2180. doi: 10.4319/lo.2006.51.5.2170
    Kessler A J, Cardenas M B, Santos I R, et al. 2014. Enhancement of denitrification in permeable carbonate sediment due to intra-granular porosity: a multi-scale modelling analysis. Geochimica et Cosmochimica Acta, 141: 440–453. doi: 10.1016/j.gca.2014.06.028
    Lapointe B E, Brewton R A, Herren L W, et al. 2019. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Marine Biology, 166(8): 108. doi: 10.1007/s00227-019-3538-9
    Lu Dongliang, Kang Zhenjun, Yang Bin, et al. 2020. Compositions and spatio-temporal distributions of different nitrogen species and lability of dissolved organic nitrogen from the Dafengjiang River to the Sanniang Bay, China. Marine Pollution Bulletin, 156: 111205. doi: 10.1016/j.marpolbul.2020.111205
    Mackin J E, Aller R C. 1984. Ammonium adsorption in marine sediments. Limnology and Oceanography, 29(2): 250–257. doi: 10.4319/lo.1984.29.2.0250
    Marchant H K, Holtappels M, Lavik G, et al. 2016. Coupled nitrification-denitrification leads to extensive N loss in subtidal permeable sediments. Limnology and Oceanography, 61(3): 1033–1048. doi: 10.1002/lno.10271
    Morris L A, Voolstra C R, Quigley K M, et al. 2019. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends in Microbiology, 27(8): 678–689. doi: 10.1016/j.tim.2019.03.004
    Muta N, Umezawa Y, Yamaguchi A, et al. 2020. Estimation of spatiotemporal variations in nutrient fluxes from sediments in the seasonally hypoxic Omura Bay, Japan. Limnology, 21(3): 341–356. doi: 10.1007/s10201-019-00591-1
    Ning Zhiming, Fang Cao, Yu Kefu, et al. 2020. Influences of phosphorus concentration and porewater advection on phosphorus dynamics in carbonate sands around the Weizhou Island, northern South China Sea. Marine Pollution Bulletin, 160: 111668. doi: 10.1016/j.marpolbul.2020.111668
    Ning Zhiming, Yu Kefu, Wang Yinghui, et al. 2019. Carbon and nutrient dynamics of permeable carbonate and silicate sands adjacent to coral reefs around Weizhou Island in the northern South China Sea. Estuarine, Coastal and Shelf Science, 225: 106229
    Ning Zhiming, Yu Kefu, Wang Yinghui, et al. 2022. Effects of nutrient enrichment and skewed N: P ratios on physiology of scleractinian corals from Weizhou Island in the northern South China Sea. Marine Ecology Progress Series, 682: 111–122. doi: 10.3354/meps13933
    Pan Ke, Zheng Xinqing, Liu Xinming, et al. 2021. Nitrogen cycling in a tropical coral reef ecosystem under severe anthropogenic disturbance in summer: insights from isotopic compositions. Water Research, 207: 117824. doi: 10.1016/j.watres.2021.117824
    Rahman M, Grace M R, Roberts K L, et al. 2019. Effect of temperature and drying-rewetting of sediments on the partitioning between denitrification and DNRA in constructed urban stormwater wetlands. Ecological Engineering, 140: 105586. doi: 10.1016/j.ecoleng.2019.105586
    Rao A M F, McCarthy M J, Gardner W S, et al. 2007. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Research, 27: 1801–1819. doi: 10.1016/j.csr.2007.03.001
    Rasheed M, Badran M I, Huettel M. 2003. Particulate matter filtration and seasonal nutrient dynamics in permeable carbonate and silicate sands of the Gulf of Aqaba, Red Sea. Coral Reefs, 22(2): 167–177. doi: 10.1007/s00338-003-0300-y
    Robertson E K, Bartoli M, Brüchert V, et al. 2019. Application of the isotope pairing technique in sediments: use, challenges, and new directions. Limnology and Oceanography: Methods, 17(2): 112–136. doi: 10.1002/lom3.10303
    Rosset S, Wiedenmann J, Reed A J, et al. 2017. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Marine Pollution Bulletin, 118(1–2): 180–187
    Rysgaard S, Risgaard-Petersen N, Niels Peter S, et al. 1994. Oxygen regulation of nitrification and denitrification in sediments. Limnology and Oceanography, 39(7): 1643–1652. doi: 10.4319/lo.1994.39.7.1643
    Santos I R, Eyre B D, Glud R N. 2012. Influence of porewater advection on denitrification in carbonate sands: evidence from repacked sediment column experiments. Geochimica et Cosmochimica Acta, 96: 247–258. doi: 10.1016/j.gca.2012.08.018
    Tan Ehui, Zou Wenbin, Zheng Zhenzhen, et al. 2020. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nature Climate Change, 10(4): 349–355. doi: 10.1038/s41558-020-0723-2
    Wang Weilei, Moore J K, Martiny A C, et al. 2019. Convergent estimates of marine nitrogen fixation. Nature, 566(7743): 205–211. doi: 10.1038/s41586-019-0911-2
    Wang Weibo, Wang Xu, Shu Xiao, et al. 2021. Denitrification of permeable sand sediment in a headwater river is mainly influenced by water chemistry, rather than sediment particle size and heterogeneity. Microorganisms, 9(11): 2202. doi: 10.3390/microorganisms9112202
    Wiedenmann J, D’Angelo C, Smith E G, et al. 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3(2): 160–164. doi: 10.1038/nclimate1661
    Wild C, Rasheed M, Jantzen C, et al. 2005. Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the northern Red Sea. Marine Ecology Progress Series, 298: 69–78. doi: 10.3354/meps298069
    Xie Lei, Gao Xuelu, Liu Yongliang, et al. 2021. Perpetual atmospheric dry deposition exacerbates the unbalance of dissolved inorganic nitrogen and phosphorus in coastal waters: a case study on a mariculture site in North China. Marine Pollution Bulletin, 172: 112866. doi: 10.1016/j.marpolbul.2021.112866
    Yang S, Gruber N. 2016. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: nitrogen cycle feedbacks and the 15N Haber-Bosch effect. Global Biogeochemical Cycles, 30(10): 1418–1440. doi: 10.1002/2016GB005421
    Yu Wanjun, Wang Wenhuan, Yu Kefu, et al. 2019. Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea. Biodiversity and Conservation, 28(14): 3925–3949. doi: 10.1007/s10531-019-01858-w
    Zhang Zengyu, Furman A. 2021. Redox dynamics at a dynamic capillary fringe for nitrogen cycling in a sandy column. Journal of Hydrology, 603: 126899. doi: 10.1016/j.jhydrol.2021.126899
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  527
  • HTML全文浏览量:  209
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 录用日期:  2022-06-24
  • 网络出版日期:  2023-02-01
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回