Detection and characteristics analysis of the western subarctic front using the high-resolution SST product

Changyuan Chen Chen Wang Huimin Li Denghui Hu Gang Li Xin Chen Yijun He

Changyuan Chen, Chen Wang, Huimin Li, Denghui Hu, Gang Li, Xin Chen, Yijun He. Detection and characteristics analysis of the western subarctic front using the high-resolution SST product[J]. Acta Oceanologica Sinica, 2023, 42(6): 24-32. doi: 10.1007/s13131-022-2102-5
Citation: Changyuan Chen, Chen Wang, Huimin Li, Denghui Hu, Gang Li, Xin Chen, Yijun He. Detection and characteristics analysis of the western subarctic front using the high-resolution SST product[J]. Acta Oceanologica Sinica, 2023, 42(6): 24-32. doi: 10.1007/s13131-022-2102-5

doi: 10.1007/s13131-022-2102-5

Detection and characteristics analysis of the western subarctic front using the high-resolution SST product

Funds: The Natural Science Foundation of Jiangsu Province under contract No. BK20210666; the National Natural Science Foundation of China under contract Nos 41620104003 and 42006163; the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology; the National Key Research and Development Program of China under contract No. 2021YFB3901004; the Graduate Innovation Project of Jiangsu Province under contract No. KYCX21_0980.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The mean SST in the Northwest Pacific from March 2010 to February 2019 (a) and the seasonally averaged SST over the region of interest in winter (b), spring (c), summer (d), autumn (e). The isothermal lines at 5℃, 10℃, 15℃ and 20℃ are overlapped as black contours.

    Figure  2.  Flowchart of the combined algorithm for front detection.

    Figure  3.  An example of the combined detection algorithm used in this study. The input SST data (a), the longitudinal and latitudinal SST gradient (b, c), magnitude of the SST gradient (d). The probability density function (PDF) of SST data over the red (black) rectangle (e, f) in a, SST front detected by the histogram analysis (g) and the combined algorithm (h). The black curves in g and h denote the central front lines obtained by the Canny algorithm.

    Figure  4.  Seasonal average of SST gradient and the occurrence of frequency over the detected ocean front by the combined algorithm in winter (DJF) (a, e), spring (MAM) (b, f), summer (JJA) (c, g) and autumn (SON) (d, h), respectively. The black contour in the bottom panel is the frequency of SST gradient larger than 0.01℃/km.

    Figure  5.  Occurrence of frequency of central front line obtained by the Canny detection algorithm in winter (DJF) (a), spring (MAM) (b), summer (JJA) (c) and autumn (SON) (d).

    Figure  6.  The monthly mean of different SST gradient percentile of 50th (blue), 90th (orange), 95th (green) and 100th (red), respectively (a); spectrum magnitude of the monthly percentiles (b). WSAF: western branch of the subarctic front.

    Figure  7.  Temporal variation of the daily western branch of the subarctic front (WSAF) intensity obtained by the combined algorithm (a), the seasonal intensity (b) and the annual intensity (c).

    Figure  8.  Time series of the western branch of the subarctic front (WSAF) location on a daily basis (blue line). The monthly mean and median are plotted in solid black and dashed red, respectively. The background color represents the averaged SST gradient between 148°E and 150°E.

    Figure  9.  Temporal variation of the western branch of the subarctic front (WSAF) area detected by the combined algorithm. Bars are the daily area color coded by seasons and the black curve is the monthly average. DJF: winter; MAM: spring; JJA: summer; SON: autumn.

  • Belkin I M, Cornillon P C, Sherman K. 2009. Fronts in large marine ecosystems. Progress in Oceanography, 81(1–4): 223–236
    Cayula J F, Cornillon P. 1992. Edge detection algorithm for SST images. Journal of Atmospheric and Oceanic Technology, 9(1): 67–80. doi: 10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
    Cayula J F, Cornillon P. 1995. Multi-image edge detection for SST images. Journal of Atmospheric and Oceanic Technology, 12(4): 821–829. doi: 10.1175/1520-0426(1995)012<0821:MIEDFS>2.0.CO;2
    Cayula J F, Cornillon P. 1996. Cloud detection from a sequence of SST images. Remote Sensing of Environment, 55(1): 80–88. doi: 10.1016/0034-4257(95)00199-9
    Chen Shuiming. 2008. The Kuroshio Extension Front from satellite sea surface temperature measurements. Journal of Oceanography, 64(6): 891–897. doi: 10.1007/s10872-008-0073-6
    Davis L S. 1975. A survey of edge detection techniques. Computer Graphics and Image Processing, 4(3): 248–270. doi: 10.1016/0146-664X(75)90012-X
    Donlon C J, Martin M, Stark J, et al. 2012. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of Environment, 116: 140–158. doi: 10.1016/j.rse.2010.10.017
    Good S, Fiedler E, Mao C Y, et al. 2020. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sensing, 12(4): 720. doi: 10.3390/rs12040720
    Gordon A L. 1975. An Antarctic oceanographic section along 170°E. Deep-Sea Research and Oceanographic Abstracts, 22(6): 357–377. doi: 10.1016/0011-7471(75)90060-1
    Guan Lei, Kawamura H. 2004. Merging satellite infrared and microwave SSTs: methodology and evaluation of the new SST. Journal of Oceanography, 60(5): 905–912. doi: 10.1007/s10872-005-5782-5
    Han Yansong, Zhang Lu, Qiao Lulu, et al. 2021. Multi-time scale variation of suspended sediment concentration over the eastern Shandong Peninsula under ocean front. Acta Sedimentologica Sinica (in Chinese), 41(3): 778–790
    Kirches G, Paperin M, Klein H, et al. 2016. GRADHIST—A method for detection and analysis of oceanic fronts from remote sensing data. Remote Sensing of Environment, 181: 264–280. doi: 10.1016/j.rse.2016.04.009
    Kobashi F, Mitsudera H, Xie Shangping. 2006. Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. Journal of Geophysical Research: Oceans, 111(C9): C09033
    Kuang Hailan, Perrie W, Chen Wei, et al. 2012. Thermal front retreivals from SAR imagery. In: Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 2637–2640
    Masujima M, Yasuda I. 2009. Distribution and modification of North Pacific intermediate water around the subarctic frontal zone east of 150°E. Journal of Physical Oceanography, 39(6): 1462–1474. doi: 10.1175/2008JPO3919.1
    Nagata Y, Michida Y, Umimura Y. 1988. Variation of positions and structures of the oceanic fronts in the Indian Ocean sector of the Southern Ocean in the period from 1965 to 1987. In: Sahrhage D, ed. Antarctic Ocean and Resources Variability. Berlin, Heidelberg: Springer, 92–98
    Nakamura H, Kazmin A S. 2003. Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. Journal of Geophysical Research: Oceans, 108(C3): 3078. doi: 10.1029/1999JC000085
    Nakano H, Tsujino H, Sakamoto K, et al. 2018. Identification of the fronts from the Kuroshio extension to the subarctic current using absolute dynamic topographies in satellite altimetry products. Journal of Oceanography, 74(4): 393–420. doi: 10.1007/s10872-018-0470-4
    Ping Bo, Su Fenzhen, Meng Yunshan, et al. 2014. A model of sea surface temperature front detection based on a threshold interval. Acta Oceanologica Sinica, 33(7): 65–71. doi: 10.1007/s13131-014-0502-x
    Rintoul S R, England M H. 2002. Ekman transport dominates local air-sea fluxes in driving variability of subantarctic mode water. Journal of Physical Oceanography, 32(5): 1308–1321. doi: 10.1175/1520-0485(2002)032<1308:ETDLAS>2.0.CO;2
    Sampe T, Nakamura H, Goto A, et al. 2010. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. Journal of Climate, 23(7): 1793–1814. doi: 10.1175/2009JCLI3163.1
    Shao Lianjun, Zhang Honglei, Zhang Chunhua, et al. 2015. A method for detecting the oceanic front using remotely sensed sea-surface temperature. Hydrographic Surveying and Charting (in Chinese), 35(2): 42–44, 51
    Shaw A G P, Vennell R. 2000. A front-following algorithm for AVHRR SST imagery. Remote Sensing of Environment, 72(3): 317–327. doi: 10.1016/S0034-4257(99)00108-X
    Shimada T, Sakaida F, Kawamura H, et al. 2005. Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote Sensing of Environment, 98(1): 21–34. doi: 10.1016/j.rse.2005.05.018
    Simhadri K K, Iyengar S S, Holyer R J, et al. 1998. Wavelet-based feature extraction from oceanographic images. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 767–778. doi: 10.1109/36.673670
    Sugimoto S, Kobayashi N, Hanawa K. 2014. Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: the influence of Kuroshio extension path state. Journal of Physical Oceanography, 44(10): 2753–2762. doi: 10.1175/JPO-D-13-0265.1
    Tomita H, Kouketsu S, Oka E, et al. 2011. Locally enhanced wintertime air-sea interaction and deep oceanic mixed layer formation associated with the subarctic front in the North Pacific. Geophysical Research Letters, 38(24): L24607
    Ullman D S, Cornillon P C. 2000. Evaluation of front detection methods for satellite-derived SST data using in situ observations. Journal of Atmospheric and Oceanic Technology, 17(12): 1667–1675. doi: 10.1175/1520-0426(2000)017<1667:EOFDMF>2.0.CO;2
    Wang Yu, Yu Yi, Zhang Yang, et al. 2020. Distribution and variability of sea surface temperature fronts in the South China Sea. Estuarine, Coastal and Shelf Science, 240: 106793
    Xu Suqin, Chen Biao, Tao Ronghua, et al. 2015. The temporal and spatial distribution characteristics of thermal front in the China seas. Journal of Telemetry, Tracking and Command (in Chinese), 36(3): 62–69, 74
    Xu Bin, Yu Jingjing, Zhang Lei, et al. 2018. Research progress of global sea surface temperature fusion. Advances in Meteorological Science and Technology (in Chinese), 8(1): 164–170
    Yang Yanlong, Liu Na, Fang Yue, et al. 2021. Spatial distribution and seasonal variation of ocean fronts in the sea of Japan. Advances in Marine Science (in Chinese), 39(3): 379–392
    Yao Yao, Zhong Zhong, Yang Xiuqun. 2018. Impacts of the subarctic frontal zone on the North Pacific storm track in the cold season: an observational study. International Journal of Climatology, 38(5): 2554–2564. doi: 10.1002/joc.5429
    Yu Peilong, Zhang Lifeng, Liu Mingyang, et al. 2020. A comparison of the strength and position variability of the Kuroshio Extension SST front. Acta Oceanologica Sinica, 39(5): 26–34. doi: 10.1007/s13131-020-1567-3
    Yuan Xiaojun, Talley L D. 1996. The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data and synoptic surveys. Journal of Geophysical Research: Oceans, 101(C7): 16491–16508. doi: 10.1029/96JC01249
    Zheng Huanhuan, Bai Yuxiu, Zhang Yaqiong. 2020. An edge detection algorithm based on Sobel operator. Microcomputer Applications (in Chinese), 36(10): 4–6
    Zhu Kelan, Chen Xi, Mao Kefeng, et al. 2019. Mixing characteristics of the subarctic front in the Kuroshio-Oyashio confluence region. Oceanologia, 61(1): 103–113. doi: 10.1016/j.oceano.2018.07.004
    Zhu Kelan, Chen Xi, Mao Kefeng, et al. 2020. Analysis on seasonal and interannual variations of the western Subarctic Front. Marine Science Bulletin (in Chinese), 39(1): 86–93
  • 加载中
图(9)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  160
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 录用日期:  2022-09-13
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回