Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves: an experimental study

Zhixin Li Meng Zhang Keda Liang Jing Wang

Zhixin Li, Meng Zhang, Keda Liang, Jing Wang. Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves: an experimental study[J]. Acta Oceanologica Sinica, 2023, 42(6): 16-23. doi: 10.1007/s13131-022-2145-7
Citation: Zhixin Li, Meng Zhang, Keda Liang, Jing Wang. Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves: an experimental study[J]. Acta Oceanologica Sinica, 2023, 42(6): 16-23. doi: 10.1007/s13131-022-2145-7

doi: 10.1007/s13131-022-2145-7

Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves: an experimental study

Funds: The National Natural Science Foundation of China under contract No. 61871353.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  A schematic diagram of the laboratory experiment designed to generate mode-2 internal solitary waves (ISWs) and detect them using optical remote sensing. See the text for an explanation of all parameters. CCD: charge-coupled device; LED: Light Emitting Diode.

    Figure  2.  An example time series diagram from Experiment 1. a. Waveforms of the internal solitary wave (ISW) from camera CCD2; b. optical remote sensing image of the ISW from camera CCD1 (y-axis is horizontal sampling width); c. y-axis is absolute gray value.

    Figure  3.  Details of parameter definitions describing a mode-2 internal solitary wave (ISW). a. Wave parameters of the mode-2 ISW; b. optical remote sensing characteristic parameters of the mode-2 ISW.

    Figure  4.  Gaofen-1 image taken north of Dongsha Islands on July 9, 2014. The blue box highlights a mode-1 internal solitary wave (ISW), and the red box highlights a mode-2 ISW. Profile data for the two ISWs are given in the insert figures. The mode-1 ISW shows dark-bright stripes, while the mode-2 ISW is the opposite.

    Figure  5.  Example diagram showing the matching of internal solitary wave (ISW) properties and profile curve of gray value of the associated remote sensing image. This time series was obtained from Experiment 12 (i.e., h1/H=0.288, C/H=4.29; the definitions of h1, H, C refer to Fig. 1). The left vertical axis represents the vertical sampling range in the tank, the right vertical axis represents the absolute gray value, and the horizontal axis represents the charge-coupled device camera shooting time. The blue boxes at the sampling time of about 30 s and 80 s represent the initial wave and reflected wave at the sampling location, respectively. The red curve is the profile curve of gray value recorded at the sampling location.

    Figure  6.  Wave parameter relationship diagrams for mode-2 internal solitary waves (ISWs). a. Relationship between average amplitude and initial step depth; b. relationship between average amplitude and average wavelength. The data points are the experimental data in this paper, and the solid black lines are the fitting of the experimental data. The black dotted lines are the experimental results of Brandt and Shipley (2014).

    Figure  7.  Schematic diagram of sampling location and imaging angle. A−D are all in the sun glint. Initial incident wave propagation from right to left. $ \mathrm{\alpha } $ is the solar zenith angle, and $ \ {\beta } $ is the sensor zenith angle. LED: Light Emitting Diode; CCD: charge-coupled device.

    Figure  8.  Bright-dark spacing versus wavelength in internal solitary wave optical remote sensing images. a. The relationship between the bright-dark spacing and the wavelength of the upper interface; b. the relationship between the bright-dark spacing and the wavelength of the lower interface; c. the relationship between the bright-dark spacing and the average wavelength.

    Figure  9.  Relationship between bright-dark spacing and wavelength at different angles. The least-square fitting results of four sampling locations A (blue dotted line), B (red dotted line), C (orange dotted line), and D (green dotted line), and the fitting results of all data (black solid line) are presented.

    Figure  10.  Fitting curve of bright-dark spacing with amplitude.

    Table  1.   Experimental parameters for the 26 individual experiments performed in the study

    No.H/cmh1/Hh/HC/h
    1400.4750.0285.33
    2400.4750.0316.43
    3400.3750.0148.85
    4400.3750.0245.24
    5400.3750.0315.69
    6400.3380.0158.20
    7400.3380.0373.39
    8400.3380.0414.26
    9400.3130.0218.33
    10400.3130.0393.19
    11400.2880.0256.97
    12400.2880.0294.29
    13400.2880.0393.22
    14400.2630.0266.73
    15400.2380.0266.73
    16400.2380.0393.19
    17400.2130.0247.33
    18400.2130.0284.48
    19460.4170.0179.21
    20460.4170.0385.75
    21460.3700.0217.18
    22460.3700.0385.71
    23460.3150.0244.57
    24460.3150.0344.52
    25460.2610.0185.92
    26460.2610.0295.17
    Note: H: total fluid depth; h1: upper layer thickness; h: characteristic thickness of the interface; C: initial step depth.
    下载: 导出CSV

    Table  2.   Correlation coefficients between bright-dark spacing and wavelength at a series of locations along the tank

    LocationSolar zenith angleSensor zenith angleRuRlRa
    A55.8°51.3°0.880.910.95
    B55.2°53.3°0.880.890.92
    C54.4°55.5°0.920.880.92
    D53.7°57.5°0.810.860.87
    下载: 导出CSV
  • Alpers W. 1985. Theory of radar imaging of internal waves. Nature, 314(6008): 245–247. doi: 10.1038/314245a0
    Apel J R, Ostrovsky L A, Stepanyants Y A, et al. 2007. Internal solitons in the ocean and their effect on underwater sound. The Journal of the Acoustical Society of America, 121(2): 695–722. doi: 10.1121/1.2395914
    Brandt A, Shipley K R. 2014. Laboratory experiments on mass transport by large amplitude mode-2 internal solitary waves. Physics of Fluids, 26(4): 046601. doi: 10.1063/1.4869101
    Carr M, Davies P A, Hoebers R P. 2015. Experiments on the structure and stability of mode-2 internal solitary-like waves propagating on an offset pycnocline. Physics of Fluids, 27(4): 046602. doi: 10.1063/1.4916881
    Carr M, Stastna M, Davies P A, et al. 2019. Shoaling mode-2 internal solitary-like waves. Journal of Fluid Mechanics, 879: 604–632. doi: 10.1017/jfm.2019.671
    Chen Liang, Xiong Xuejun, Zheng Quanan, et al. 2020. Mooring observed mode-2 internal solitary waves in the northern South China Sea. Acta Oceanologica Sinica, 39(11): 44–51. doi: 10.1007/s13131-020-1667-0
    Davis R E, Acrivos A. 1967. Solitary internal waves in deep water. Journal of Fluid Mechanics, 29(3): 593–607. doi: 10.1017/S0022112067001041
    Farmer D M, Smith J D. 1980. Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Research Part A. Oceanographic Research Papers, 27(3–4): 239–246, IN5–IN10, 247–254,
    Helfrich K R, Melville W K. 2006. Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38: 395–425. doi: 10.1146/annurev.fluid.38.050304.092129
    Hennings I, Matthews J, Metzner M. 1994. Sun glitter radiance and radar cross-section modulations of the sea bed. Journal of Geophysical Research: Oceans, 99(C8): 16303–16326. doi: 10.1029/93jc02777
    Honji H, Matsunaga N, Sugihara Y, et al. 1995. Experimental observation of internal symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15(2): 89–102. doi: 10.1016/0169-5983(94)00032-u
    Huang Xiaodong, Tian Jiwei, Zhao Wei. 2012. The behaviors of internal solitary waves near the continental shelf of South China Sea inferred from satellite images. Advanced Materials Research, 588–589: 2131–2135,
    Jackson C. 2007. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112(C11): C11012. doi: 10.1029/2007jc004220
    Jackson C R, Alpers W. 2010. The role of the critical angle in brightness reversals on sunglint images of the sea surface. Journal of Geophysical Research: Oceans, 115(C9): C09019. doi: 10.1029/2009JC006037
    Konyaev K V, Sabinin K D, Serebryany A N. 1995. Large-amplitude internal waves at the Mascarene Ridge in the Indian Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 42(11–12): 2075–2091,
    Lamb K G, Farmer D. 2011. Instabilities in an internal solitary-like wave on the Oregon shelf. Journal of Physical Oceanography, 41(1): 67–87. doi: 10.1175/2010JPO4308.1
    Li Xiaofeng, Jackson C R, Pichel W G. 2013. Internal solitary wave refraction at Dongsha Atoll, South China Sea. Geophysical Research Letters, 40(12): 3128–3132. doi: 10.1002/grl.50614
    Liu Antony K, Su Feng-Chun, Hsu Ming-Kang, et al. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Continental Shelf Research, 59: 18–27. doi: 10.1016/j.csr.2013.02.009
    Matthews J P, Aiki H, Masuda S, et al. 2011. Monsoon regulation of Lombok Strait internal waves. Journal of Geophysical Research: Oceans, 116(C5): C05007. doi: 10.1029/2010jc006403
    Maxworthy T. 1980. On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions. Journal of Fluid Mechanics, 96(1): 47–64. doi: 10.1017/s0022112080002017
    Mei Yuan, Wang Jing, Sun Lina, et al. 2017. Detection of mode-2 internal solitary waves in northern Dongsha atoll based on high resolution optical remote sensing. Acta Photonica Sinica (in Chinese), 46(10): 1001002. doi: 10.3788/gzxb20174610.1001002
    Melsheimer C, Kwoh L K. 2001. Sun glitter in spot images and the visibility of oceanic phenomena. In: Proceedings of the 22nd Asian Conference on Remote Sensing. Singapore: Asian Conference on Remote Sensing, 870–875
    Osborne A R, Burch T L. 1980. Internal solitons in the Andaman Sea. Science, 208(4443): 451–460. doi: 10.1126/science.208.4443.451
    Qian Hongbao, Huang Xiaodong, Tian Jiwei. 2016. Observational study of one prototypical mode-2 internal solitary waves in the northern South China Sea. Haiyang Xuebao (in Chinese), 38(9): 13–20. doi: 10.3969/j.issn.0253-4193.2016.09.002
    Raju N J, Dash M K, Dey S P, et al. 2019. Potential generation sites of internal solitary waves and their propagation characteristics in the Andaman Sea—a study based on MODIS true-colour and SAR observations. Environmental Monitoring and Assessment, 191(3): 809. doi: 10.1007/s10661-019-7705-8
    Ramp S R, Yang Y J, Reeder D B, et al. 2012. Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan. Journal of Geophysical Research: Oceans, 117(C3): C03043. doi: 10.1029/2011JC00766
    Salloum M, Knio O M, Brandt A. 2012. Numerical simulation of mass transport in internal solitary waves. Physics of Fluids, 24(1): 016602. doi: 10.1063/1.3676771
    Shen Hui, Perrie W, Johnson C L. 2020. Predicting internal solitary waves in the Gulf of Maine. Journal of Geophysical Research: Oceans, 125(3): e2019JC015941. doi: 10.1029/2019jc015941
    Stamp A P, Jacka M. 1995. Deep-water internal solitaty waves. Journal of Fluid Mechanics, 305: 347–371. doi: 10.1017/S0022112095004654
    Sun Lina, Zhang Jie, Meng Junmin. 2019. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS. Acta Oceanologica Sinica, 38(7): 121–128. doi: 10.1007/s13131-019-1449-8
    Wang Jing, Zhang Meng, Mei Yuan, et al. 2021. Study on inversion amplitude of internal solitary waves applied to shallow sea in the laboratory. IEEE Geoscience and Remote Sensing Letters, 18(4): 577–581. doi: 10.1109/LGRS.2020.2985123
    Wu Jin. 1969. Mixed region collapse with internal wave generation in a density-stratified medium. Journal of Fluid Mechanics, 35(3): 531–544. doi: 10.1017/s0022112069001261
    Yang Ying Jang, Fang Ying Chih, Chang Ming-Huei, et al. 2009. Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. Journal of Geophysical Research: Oceans, 114(C10): C10003. doi: 10.1029/2009jc005318
    Yang Y J, Fang Y C, Tang T Y, et al. 2010. Convex and concave types of second baroclinic mode internal solitary waves. Nonlinear Processes in Geophysics, 17(6): 605–614. doi: 10.5194/npg-17-605-2010
    Yang Ying-Jang, Tang Tswen Yung, Chang Ming-Huei, et al. 2004. Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering, 29(4): 1182–1199. doi: 10.1109/joe.2004.841424
    Zheng Quanan, Yuan Yeli, Klemas V, et al. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12): 31415–31423. doi: 10.1029/2000JC000726
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  103
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 录用日期:  2022-12-27
  • 网络出版日期:  2023-06-21
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回