Geochemistry of volcanic glass from Mahanadi offshore region, eastern continental margin of India: Constraints on the contribution of latest Toba super-eruption

Muralidhar Kocherla Durbar Ray Manavalan Satyanarayanan Hilda Joao Virsen Gaikwad P.B Ramamurty

Muralidhar Kocherla, Durbar Ray, Manavalan Satyanarayanan, Hilda Joao, Virsen Gaikwad, P.B Ramamurty. Geochemistry of volcanic glass from Mahanadi offshore region, eastern continental margin of India: Constraints on the contribution of latest Toba super-eruption[J]. Acta Oceanologica Sinica, 2024, 43(2): 111-119. doi: 10.1007/s13131-023-2195-5
Citation: Muralidhar Kocherla, Durbar Ray, Manavalan Satyanarayanan, Hilda Joao, Virsen Gaikwad, P.B Ramamurty. Geochemistry of volcanic glass from Mahanadi offshore region, eastern continental margin of India: Constraints on the contribution of latest Toba super-eruption[J]. Acta Oceanologica Sinica, 2024, 43(2): 111-119. doi: 10.1007/s13131-023-2195-5

doi: 10.1007/s13131-023-2195-5

Geochemistry of volcanic glass from Mahanadi offshore region, eastern continental margin of India: Constraints on the contribution of latest Toba super-eruption

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Occurrences of the Youngest Toba Tuff (YTT) across the Indian Ocean region, southern Asia, and the South China Sea (modified from Lane et al., 2013; Westaway et al., 2011) (a). Bathymetric map of the study area in Mahanadi offshore region, east coast of India (b). Bathymetry data of the studied area was derived from GEBCO Compilation Group (2020) GEBCO 2020 Grid (doi: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9).

    Figure  2.  Multimodal particle size distribution of volcanic tephra layers in five studied cores from Mahanadi offshore region, Bay of Bengal.

    Figure  4.  A. The chemical composition of glass shards from the Mahanadi offshore, Bay of Bengal. Total alkali-silica (TAS) diagram showing the rhyolitic composition of glass shards (modified from Le Bas et al., 1986). B. Chemical correlation of glass shards from volcanic ash layer in the Mahanadi basin deposits of the YTT. The data obtained for Krakatau Volcano (Mandeville et al., 1996); Tambora Volcano (Self et al., 1984); Pinatubo, Taal, Ranau and Maninjau Volcano (De Maisonneuve et al., 2020).

    Figure  5.  The comparative plots of Ba vs. Y (a) and Sr vs. Y between volcanic glass shards from the Mahanadi basin (present study) and Toba tephra deposits in India Occan (b) (Srivastava and Singh, 2021; Pearce et al., 2020; Jumaila et al., 2017; Smith et al., 2011; Pattan, 2002; Song et al., 2000; Chesner, 1998; Westgate et al., 1998). The categorization of YTT among five different populations (I to V) was made by following Pearce et al., 2020.

    Figure  6.  Chondrite normalized REE patterns of volcanic glass shards from the Mahanadi offshore basin, Bay of Bengal are compared with those from the Indian Ocean (Westgate et al., 1998); South China Sea (Song et al., 2000); Arabian Sea (Pattan et al., 2001) and Toba caldera (Smith et al., 2011). Normalization values are obtained from Sun and McDonough (1989).

    Table  1.   Locations of sediment cores, water depth, core recovery, occurence depth of tephra layers, grain size distribution and specific gravity of glass shards from Toba ashes at Mahanadi offshore basin

    Cores Latitude, Longitude Water
    depth/m
    Core recovery/m Depth of ash
    layer/mbsf
    Grain size/µm Specific gravity/
    (gm·cm−3)
    < 2.0 2–63 63–125 > 125
    MD-19 18°59.11’N 85°41.17’E 1480 39.08 9.64–9.72 3.31 81.13 15.6 0.0 2.7
    MD-20 18°47.36’N 85°36.44’E 1866 50.08 19.14–19.19 2.01 62.44 31.29 4.26 2.6
    MD-23 19°06.25’N 85°50.15’E 1600 38.62 22.2–22.26 1.47 48.42 37.57 12.54 2.6
    MD-24 19°03.48’N 85°45.59’E 1578 31.89 18.59–18.69 1.75 62.11 30.77 5.37 2.7
    MD-27 18°57.36’N 85°43.44’E 1691 36.06 12.13–12.18 1.6 62.92 31.17 4.31 2.6
    下载: 导出CSV

    Table  2.   Major element composition (wt%) of glass shards from the Mahanadi offshore region compared with the YTT from other locations. Please note that A = Central Indian Ocean Basin (Pattan et al., 1999); B = South China Sea (Song et al., 2000); C = Arabian Sea (Pattan et al., 2001); D, E, F = Glasses from YTT, MTT and OTT respectively from the Toba caldera (Chesner, 1998)

    Major oxides Cores from the Mahanadi basin YTT from other marine environments Glasses from the Toba caldera
    YTT MTT OTT
    MD-19 MD-23 MD-24 MD-27 MD-20 A B C D E F
    SiO2 75.98 76.20 75.64 75.22 75.74 76.81 77.48 77.06 76.8–78.2 75.2–76.9 71.9–76.4
    Al2O3 10.86 10.48 10.69 10.92 11.26 12.77 12.42 12.44 11.9–12.9 12.6–13.9 13.3–14.4
    Na2O 2.54 2.09 2.33 2.50 3.00 3.41 2.43 3.36 2.6–2.9 2.98–3.5 3.4–3.6
    K2O 4.95 5.33 5.18 5.55 4.62 5.08 4.72 5.11 4.8–5.3 4.1–4.8 4.7–4.8
    CaO 0.68 0.69 0.79 0.84 0.57 0.79 0.75 0.80 0.62–0.94 0.75–0.82 1.0–1.9
    Fe2O3 0.80 1.15 0.95 1.09 0.77 0.92 0.85 0.88 0.84–1.2 1.2–1.4 0.6–2.5
    H2O 5.42 5.29 4.40 4.18 5.34 5.23 4.94
    Na2O + K2O 7.49 7.61 7.42 7.51 8.05
    下载: 导出CSV

    Table  3.   Trace element concentrations (10-6) in volcanic glasses from the Mahanadi basin. The data are compared with the range of volcanic glass composition from other YTT deposits. Please note that A = YTT from India, Malaysia, Indian Ocean, Toba caldera (Srivastava and Singh, 2019 and references therein); B = YTT glass from ODP-758 site in Bay of Bengal (Jumaila et al., 2017); C = Five populations of YTT glass composition (Pearce et al., 2020); D = YTT glass shards from Central Indian Ocean Basin (CIOB) (Pattan et al., 2002)

    Element concentration YTT from the cores of Mahanadi basin YTT from other marine environments
    MD-19 MD-23 MD-24 MD-27 MD-20 A B C D
    Sc/10–6 2.7510–6 1.84 2.92 1.99 2.88 1.7–3.02 4.3 1.54–1.93
    V/10–6 3.64 3.25 4.09 2.89 6.48 18.79 12.7–17.4
    Cu/10–6 3.05 2.14 1.65 1.54 22.5 19.08 2.43–6.2
    Zn/10–6 174 152 226 281 432 71.41 6.95–10.2
    Ga/10–6 14.4 6.84 14.2 10.4 13.9 9.01–11.08 16.55 8.3–12.3
    Rb/10–6 272 111 239 193 224 199–286 205 200–292 171–252
    Sr/10–6 60.3 31.0 52.4 53.5 89.9 25.8–108 87.28 28.9–113 43.7–63.8
    Y/10–6 41.6 18.2 36.1 31.2 36.3 28.9–64.7 29.26 36.9–69.8 22–31.7
    Zr/10–6 176 71.3 153 135 154 119 116–144 57.9–87.6
    Nb/10–6 18.4 7.15 16.6 15.1 15.1 10.2–22.5 8.45 17.5–23.9 11–15.8
    Cs/10–6 10.4 3.41 10.3 7.37 9.33 5.3–10.8 12.55 5.12–10.8 7.1–10.9
    Ba/10–6 453 187 537 338 812 88–1142 527 94.5–1191 350–514
    Hf/10–6 5.81 1.59 4.79 4.36 4.89 3.94 5.6–6.05 2.8–3.71
    Ta/10–6 4.07 0.91 2.99 2.37 2.22 1.1 2.15–3.76 1.18–1.74
    Pb/10–6 40.9 46.5 59.3 45.4 84.6 25.3–72.4 12.94 57.1–60.9
    Th/10–6 34.1 15.9 32.7 25.1 30.8 25.4–58 21.05 45.8–64.3 23.2–32.9
    U/10–6 5.73 2.50 5.92 4.34 5.01 3.99–9.97 5.82 5.28–10.5 6.6–8.1
    Sr/Y 1.45 1.70 1.45 1.71 2.48 2.98 0.42–3.09
    Ba/Y 10.9 10.3 14.9 10.8 22.4 18.01 1.36–32.7
    Zr/Y 4.2 3.9 4.2 4.3 4.2 4.07 1.67–3.91
    U/Ce 0.09 0.095 0.083 0.089 0.078
    下载: 导出CSV

    Table  4.   REE composition (in 10–6) and systematics in volcanic ash from Mahanadi basin Europium anomaly, Eu/Eu* = Eun/(Smn .Gdn)0.5& Cerium anomaly, Ce/Ce* = 3Cen/(2Lan+Nd). Please note that A = YTT from India, Malaysia, Indian Ocean, Toba caldera (Srivastava and Singh, 2019 and references therein); B = YTT glass from ODP-758 site in Bay of Bengal (Jumaila et al., 2017); C = five populations of YTT glass composition (Pearce et al., 2020)

    REEs YTT from the cores of Mahanadi basin YTT from other marine environments
    MD-19 MD-23 MD-24 MD-27 MD-20 A B C
    La 33.61 14.47 37.49 25.73 33.44 21.3–60.7 33.81 34.3–68
    Ce 63.72 26.18 71.38 48.67 63.86 40.0–99.2 55.99 66–107
    Pr 8.14 3.42 8.82 6.09 8.05 4.7–10.1 6.82 8.02–11.1
    Nd 24.73 9.14 24.33 18.62 23.49 17.0–34.4 28.78 30.9–37.4
    Sm 5.27 1.83 5.04 3.96 4.93 3.3–7.4 5.32 7.09–8.24
    Eu 0.48 0.15 0.4 0.36 0.52 0.3–0.74 0.72 0.36–0.75
    Gd 4.07 1.37 3.74 3 3.72 2.8–7.95 4.22 6.14–8.89
    Tb 0.73 0.23 0.64 0.54 0.65 0.54–1.42 0.73 0.94–1.58
    Dy 4.78 1.42 3.98 3.56 4.17 3.2–9.64 3.89 6.3–10.6
    Ho 1.09 0.33 0.91 0.82 0.95 0.58–2.17 0.74 1.37–2.37
    Er 3.08 0.93 2.59 2.31 2.65 1.91–6.99 2.43 4.2–7.65
    Tm 0.55 0.16 0.46 0.42 0.47 0.34–1.18 0.45 0.71–1.29
    Yb 4.22 1.28 3.49 3.2 3.57 2.9–7.96 3.01 4.86–8.93
    Lu 0.72 0.22 0.6 0.54 0.6 0.48–1.28 0.48 0.77–1.44
    ∑REE 155.2 61.1 163.9 117.8 151.1
    %LREE 90.2 92.5 92.3 90.3 91.4
    Eu/Eu* 0.31 0.29 0.28 0.32 0.37
    Ce/Ce* 0.93 0.91 0.95 0.93 0.94
    Ndn/Ybn 2.10 2.57 2.51 2.09 2.37
    下载: 导出CSV
  • Amonkar A, Iyer S D, Babu E V S S K, et al. 2020. Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin. Journal of Earth System Science, 129(1): 175, doi: 10.1007/s12040-020-01429-6
    ASTM. 1995. Standard Test Method for Determination of the Point Load Strength Index of Rock. West Conshohocken, PA.
    Bühring C, Sarnthein M. 2000. Toba ash layers in the South China Sea: Evidence of contrasting wind directions during eruption ca. 74 ka. Geology, 28(3): 275–278, doi: 10.1130/0091-7613(2000)28<275:TALITS>2.0.CO;2
    Belousova E A, Griffin W L, O'Reilly S Y. 2006. Zircon crystal morphology, trace element signatures and Hf Isotope composition as a tool for petrogenetic modelling: Examples from eastern Australian Granitoids. Journal of Petrology, 47(2): 329–353, doi: 10.1093/petrology/egi077
    Carey S, Sigurdsson H. 2000. Grain Size of Miocene volcanic layers from grain size of Miocene volcanic layers from implications for source areas and dispersal implications for source areas and dispersal. Proceedings of the Ocean Drilling Program, Scientific Results, 165: 101–113.
    Chesner C A. 1998. Petrogenesis of the Toba tuffs, Sumatra, Indonesia. Journal of Petrology, 39(3): 397–438, doi: 10.1093/petroj/39.3.397
    De Maisonneuve C B, Bergal‐Kuvikas, O. 2020. Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: identifying tephrochronologic markers. Journal of Quaternary Science, 35(1-2): 272–287, doi: 10.1002/jqs.3181
    Dehn J, Farrell J W, Schmincke H U. 1991. Neogene tephrochronology from Site 758 on northern Ninetyeast Ridge: Indonesian arc volcanism of the past 5 Ma. Proceedings of the Ocean Drilling Program, Scientific Results, 121: 273–295.
    Fisher R V, Schmincke H U. 1984. Submarine volcaniclastic rocks. In: Fisher R V, Schmincke H U, eds. Pyroclastic Rocks. Berlin, Heidelberg: Springer. 265–296, doi: 10.1007/978-3-642-74864-6_10
    Flores J A, Johnson J E, Mejía-Molina A E, et al. 2014. Sedimentation rates from calcareous nannofossil and planktonic foraminifera biostratigraphy in the Andaman Sea, northern Bay of Bengal, and eastern Arabian Sea. Marine and Petroleum Geology, 58: 425–437, doi: 10.1016/j.marpetgeo.2014.08.011
    Fuloria R C, Pandey R N, Bharali B R, et al. 1992. Stratigraphy, structure and tectonics of Mahanadi offshore basin. In: Recent Geoscientific studies in the Bay of Bengal and the Andaman basin. Journal of Geological Society of India, 29: 255–265.
    Gasparotto G, Spadafora E, Summa V, et al. 2000. Contribution of grain size and compositional data from the Bengal Fan sediment to the understanding of Toba volcanic event. Marine Geology, 162(2–4): 561–572, doi: 10.1016/S0025-3227(99)00090-0
    Gatti E, Villa I M, Achyuthan H, et al. 2014. Geochemical variability in distal and proximal glass from the Youngest Toba Tuff eruption. Bulletin of Volcanology, 76(9): 859, doi: 10.1007/s00445-014-0859-x
    Izet G A. 1981. Volcanic ash beds: recorders of upper cenozoic silicic pyroclastic volcanism in the western United States. Journal of Geophysical Research:Solid Earth, 86(B11): 10200–10222, doi: 10.1029/JB086iB11p10200
    Jumaila C P U, Pattan J N, Ahmad S M, et al. 2017. Morphology and chemical composition of ash layer of about 8Ma old from ODP-758 site, Bay of Bengal. Indian Journal of Geo-Marine Sciences, 46(5): 871–876.
    Kennett J P. 1981. Marine tephrochronology. In: Emiliani C, Ed. The Oceanic Lithosphere. The Sea. New York: Wiley, 1373–1436
    Lane C S, Chorn B T, Johnson T C. 2013. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proceedings of the National Academy of Sciences of the United States of America, 110(20): 8025–8029, doi: 10.1073/pnas.1301474110
    Le Bas M J, Le Maitre R W, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750, doi: 10.1093/petrology/27.3.745
    Lewis L, Ditchfield P, Pal J N, et al. 2012. Grain size distribution analysis of sediments containing Younger Toba tephra from Ghoghara, Middle Son valley, India. Quaternary International, 258: 180–190, doi: 10.1016/j.quaint.2011.12.002
    Liang X R, Wei G J, Shao L, et al. 2001. Records of Toba eruptions in the South China Sea. Science in China Series D: Earth Sciences, 44(10): 871–878, doi: 10.1007/BF02907078
    Mandeville C W, Carey S, Sigurdsson H. 1996. Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. Journal of Volcanology and Geothermal Research, 74(3-4): 243–274, doi: 10.1016/S0377-0273(96)00060-1
    Mascarenhas-Pereira M B L, Nath B N, Iyer S D, et al. 2016. Multiple ash layers in late Quaternary sediments from the Central Indian Basin. Journal of Volcanology and Geothermal Research, 316: 85–100, doi: 10.1016/j.jvolgeores.2016.03.011
    Nakamura N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 38(5): 754–775, doi: 10.1016/0016-7037(74)90149-5
    Ninkovich D, Shackleton N J, Abdel-Monem A A, et al. 1978. K-Ar age of the late Pleistocene eruption of Toba, north Sumatra. Nature, 276(5688): 574–577, doi: 10.1038/276574a0
    Pattan J N, Shane P, Banakar V K. 1999. New occurrence of Youngest Toba Tuff in abyssal sediments of the Central Indian Basin. Marine Geology, 155(3-4): 243–248, doi: 10.1016/S0025-3227(98)00160-1
    Pattan J N, Shane P, Pearce N J G, et al. 2001. An occurrence of ~74 ka Youngest Toba Tephra from the Western Continental Margin of India. Current Science, 80(10): 1322–1326
    Pattan J N. 2002. Volcanic ash and its enigma: a case study from the central Indian ocean basin. Journal of the Geological Society of India, 60(2): 127–130
    Pattan J N, Prasad M S, Babu E V S S K. 2010. Correlation of oldest Toba tuff to sediments in the central Indian Ocean basin. Journal of Earth System Science, 119(4): 531–539, doi: 10.1007/s12040-010-0027-4
    Pearce N J G, Westgate J A, Gatti E, et al 2014. Individual glass shard trace element analyses confirm that all known Toba tephra reported from India is from the c. 75-ka Youngest Toba eruption. Journal of Quaternary Science, 29(8): 729–734, doi: 10.1002/jqs.2741
    Pearce N J G, Westgate J A, Gualda G A R, et al. 2020. Tephra glass chemistry provides storage and discharge details of five magma reservoirs which fed the 75 ka Youngest Toba Tuff eruption, northern Sumatra. Journal of Quaternary Science, 35(1-2): 256–271, doi: 10.1002/jqs.3149
    Rao D G, Krishna K S, Sar D. 1997. Crustal evolution and sedimentation history of the Bay of Bengal since the Cretaceous. Journal of Geophysical Research:Solid Earth, 102(B8): 17747–17768, doi: 10.1029/96JB01339
    Rose W I, Chesner C A. 1987. Dispersal of ash in the great Toba eruption, 75 ka. Geology, 15(10): 913–917, doi: 10.1130/0091-7613(1987)15<913:DOAITG>2.0.CO;2
    Sastri V V, Venkatachala B S, Narayanan V. 1981. The evolution of the east coast of India. Palaeogeography, Palaeoclimatology, Palaeoecology, 36(1–2): 23–54,doi: 10.1016/0031-0182(81)90047-X
    Satyanarayanan M, Balaram V, Sawant S S, et al. 2018. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. Atomic Spectroscopy, 39(1): 1–15, doi: 10.46770/AS.2018.01.001
    Self S, Rampino M R, Newton M S, et al. 1984. Volcanological study of the great Tambora eruption of 1815. Geology, 12(11): 659–663, doi: 10.1130/0091-7613(1984)12<659:VSOTGT>2.0.CO;2
    Smith V C, Pearce N J G, Matthews N E, et al. 2011. Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quaternary International, 246(1-2): 97–104, doi: 10.1016/j.quaint.2011.05.012
    Song S R, Chen C H, Lee M Y, et al. 2000. Newly discovered eastern dispersal of the youngest Toba Tuff. Marine Geology, 167(3-4): 303–312, doi: 10.1016/S0025-3227(00)00034-7
    Srivastava A K, Singh A. 2020. Lithological, physical and chemical attributes of primary volcanic ash of YTT, Purna alluvial basin, Central India. Geological Journal, 55(10): 7011–7023, doi: 10.1002/gj.3820
    Srivastava A K, Singh A. 2021. Geochemistry and constrained 40Ar/39Ar dating of Youngest Toba Tuff glass shards, Purna alluvial basin, Central India. Journal of Earth System Sciences, 130: 10, doi: 10.1007/s12040-020-01513-x
    Subrahmanyam V, Subrahmanyam A S, Murty G P S, et al. 2008. Morphology and tectonics of Mahanadi Basin, northeastern continental margin of India from geophysical studies. Marine Geology, 253(1-2): 63–72, doi: 10.1016/j.margeo.2008.04.007
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publicatio, 42: 313–345, doi: 10.1144/GSL.SP.1989.042.01.19
    Westaway R, Mishra S, Deo S, et al. 2011. Methods for determination of the age of Pleistocene tephra, derived from eruption of Toba, in central India. Journal of Earth System Science, 120(3): 503–530, doi: 10.1007/s12040-011-0087-0
    Westgate J A, Shane P A R, Pearce N J G, et al. 1998. All Toba Tephra Occurrences across Peninsular India Belong to the 75, 000 yr B. P. Eruption. Quaternary Research, 50(1): 107–112, doi: 10.1006/qres.1998.1974
    Westgate J A, Pearce N J G, Perkins W T, et al. 2013. Tephrochronology of the Toba tuffs: Four primary glass populations define the 75-ka Youngest Toba Tuff, northern Sumatra, Indonesia. Journal of Quaternary Science, 28(8): 772–776, doi: 10.1002/jqs.2672
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  94
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 录用日期:  2023-03-17
  • 网络出版日期:  2024-01-03
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回