Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval

Tianyu Zhang Mohammed Shokr Zhida Zhang Fengming Hui Xiao Cheng Zhilun Zhang Jiechen Zhao Chunlei Mi

Tianyu Zhang, Mohammed Shokr, Zhida Zhang, Fengming Hui, Xiao Cheng, Zhilun Zhang, Jiechen Zhao, Chunlei Mi. Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval[J]. Acta Oceanologica Sinica, 2024, 43(7): 93-111. doi: 10.1007/s13131-023-2210-x
Citation: Tianyu Zhang, Mohammed Shokr, Zhida Zhang, Fengming Hui, Xiao Cheng, Zhilun Zhang, Jiechen Zhao, Chunlei Mi. Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval[J]. Acta Oceanologica Sinica, 2024, 43(7): 93-111. doi: 10.1007/s13131-023-2210-x

doi: 10.1007/s13131-023-2210-x

Parameterization, sensitivity, and uncertainty of 1-D thermodynamic thin-ice thickness retrieval

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The geographic locations of the sonar sites (a), the IceBridge footprints (b), the IABP buoys (c), and the wind speed stations (d) used in this study.

    Figure  2.  Flowchart of the study scheme.

    Figure  3.  Relative deviation of the model output TIT using each test scheme (T1, T2, …, T14) from the TIT obtained using the default scheme. The solid points are mean values of the deviation, and the vertical lines represent one standard deviation. The colors denote the upper limit of the different TIT bins, from 0.1 m to 0.5 m.

    Figure  4.  TIT from the 1-D model versus the ULS data, obtained for different TIT intervals. The solid dots represent the mean value from the model, and the error bars represent 0.5 standard deviation. Dotted line indicates diagonal line.

    Figure  5.  Comparison between the model-retrieved TIT using the combination of schemes T5 and T9 and the TIT from the ULS, IceBridge (IB), and SMOS/SMAP products, respectively. Cmb. denotes the combination scheme. The interval between the data on the horizontal scale is 0.05 m. The error bars represent 0.5 standard deviation. Dotted line indicates diagonal line.

    Figure  6.  Comparisons of ERA5 $ {T}_{{\mathrm{a}}} $ vs. IABP $ {T}_{{\mathrm{a}}} $ (a), MODIS $ {T}_{{\mathrm{s}}} $ vs. IABP $ {T}_{{\mathrm{s}}} $ (c), and ERA5 $ u $ vs. NWS-observed (Obs.) $ u $ (e), and their corresponding probability distributions of the differences, with fitted curves (black lines) (b, d, and f). The error bars represent one standard deviation. The numbers between brackets in a and e denote the data counts. a and c share the same data counts. The numbers in b, d, and f at the peak of each curve are the mean value of the differences. Dotted line in a indicates diagonal line.

    Figure  7.  Plot between $ {T}_{{\mathrm{s}}} $ from MODIS and ERA5 (a), and histogram of the difference between the measurements (b). The shadow colors in a show the counts of data. The error bars represent one standard deviation. The black line in b is the fitted Gaussian curves, and the number at the peak is the mean difference. Dotted line in a indicates diagonal line.

    Figure  8.  Plots showing the retrieved TIT obtained using the original Ts, Ta, and u as inputs (values in the horizontal axis) and the retrieved TIT with perturbations added representing the error in measurements from Ta (with respect to IABP Ta) (a), Ts (with respect to IABP Ts) (b), u (with respect to the NWS/NDBC observations) (c), and Ts (with respect to ERA5 skin temperature) (d). The error bars represent one standard deviation. The shadow colors show the counts of the data points. Dotted lines indicate diagonal lines.

    Table  1.   Summary of the previous uncertainty in TIR-TIT retrieval

    Reference Data source (data volume) Uncertainty analysis scheme Finding
    Yu and Rothrock (1996) AVHRR (13 images) $ {T}_{{\mathrm{s}}} $ ± 1 K, $ {T}_{{\mathrm{a}}} $ ± 1.6 K,
    $ u $ ± 2 m/s
    (1) The uncertainty of the TIT caused by the error in the variables increases with the ice thickness. (2) The uncertainty of the cumulative distribution is no more than 3% for ice thinner than 0.2 m.
    Willmes et al. (2010) AVHRR + NCEP
    (1 image)
    $ {T}_{{\mathrm{a}}} $ ± 5 K, $ u $ ± 3 m/s Results in max. TIT errors of ±20% (for TIT ≤ 0.5 m)
    Wang et al. (2010) MODIS (case study) $ {T}_{{\mathrm{s}}} $ ± 2 K, $ u $ ± 1 m/s For TIT < 0.3 m, TIT is −0.172 m or +0.179 m when $ {T}_{{\mathrm{s}}} $ + 2 K or Ts − 2 K; TIT is + 0.166 m or −0.133 m when $ u $ + 1 m/s or −1 m/s.
    Mäkynen et al. (2013) MODIS + HIRLAM
    (199 images)
    The largest TIT uncertainty comes from air temperature.
    Adams et al. (2013) MODIS + NCEP/COSMO (two-winter data) $ {T}_{{\mathrm{s}}} $ ± 1.6 K, $ {T}_{{\mathrm{a}}} $ ± 4.5 K;
    $ u $ ± 1.3 m/s, NCEP vs. COSMO
    (1) For all the variables’ uncertainties, the TIT varies by ±0.37 m for TIT of ≤ 0.5 m. (2) The NCEP $ {T}_{{\mathrm{a}}} $ leads to overestimated ice thicknesses, in comparison to COSMO $ {T}_{{\mathrm{a}}} $.
    Zeng et al. (2016) MODIS + ERA-interim
    (four images)
    Altering the value of $ {T}_{{\mathrm{a}}}-{T}_{{\mathrm{s}}} $ (1) For TaTs > +3 K, the TaTs error of only +1 K causes the TIT to
    vary by +0.1 m. (2) For TaTs ≤ 0 K or TaTs > +2 K, the TIT decreases by 1 cm to 2 cm or 9 cm when u increases from 0 m/s to 12 m/s.
    Note: The symbols are specified in Table A1 in Appendix. The data sources of AVHRR or MODIS are used for $ {T}_{{\mathrm{s}}} $, and the National Centers for Environmental Prediction (NCEP), High Resolution Limited Area Model (HIRLAM), or European Centre for Medium-Range Weather Forecasts (ECMWF) Re-analysis (ERA)-Interim reanalysis data are the other meteorological input variables of the 1-D model. In the third column, the regular font denotes the analysis scheme for the errors in the input variables, the values on the right side of the positive and negative signs “±” are the analyzed variable’s errors, and the bold font is for comparing the sources of the different input variables. − means no uncertainty analysis scheme.
    下载: 导出CSV

    Table  2.   Specifications of the sonar measurements used in this study

    Data source Data form Number of sites Data period Number of samples Nominal error/cm
    NPEO 10-min ice draft data 2 2002, 2005 10 10
    BGEP daily average draft statistics 34 2003–2021 737 5–10
    IOS-EBS 4-min ice draft data 1 2003 1724 5
    IOP 5-min ice draft data 5 2005–2008 3305 10
    Note: NPEO is the abbreviation for the North Pole Environmental Observatory (Morison, 2009). BGEP denotes the Beaufort Gyre Exploration Project. IOS and EBS are the short forms for the Institute of Ocean Sciences and the Eastern Beaufort Sea, respectively (Melling and Riedel, 2008). IOP denotes the Integrative Observational Platforms from University of Washington.
    下载: 导出CSV

    Table  3.   Station ID and geographic locations of the wind speed observation stations

    Data source Station ID Latitude and longitude Temporal resolution
    NWS 99950 71.00°N, 8.46°E 1 h
    99710 74.50°N, 19.00°E 1 h
    99720 76.51°N, 25.01°E 1 h
    99740 78.91°N, 28.89°E 1 h
    99752 76.47°N, 16.54°E 1 h
    99790 78.07°N, 13.63°E 1 h
    99927 80.06°N, 16.24°E 1 h
    99935 80.65°N, 25.00°E 1 h
    99938 80.10°N, 31.46°E 1 h
    NDBC ULRA2 63.87°N, 160.78°W 6 min
    PRDA2 70.40°N, 148.53°W 6 min
    下载: 导出CSV

    Table  4.   The parameterized variable test schemes

    Test scheme Parameter Default scheme Parameterization scheme
    Parameter name Equation number
    T1 atmospheric emissivity ($ {\varepsilon }_{{\mathrm{a}}} $) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{J}\mathrm{X}06} $ (+${E}_{\mathrm{A}\mathrm{E}96}^{'}$) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{EF}61}(+{E}_{\mathrm{AE}96}^{'}) $ Eq. (A1) [+ Eq. (A6)]
    T2 atmospheric emissivity ($ {\varepsilon }_{{\mathrm{a}}} $) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{J}\mathrm{X}06} $ (+${E}_{\mathrm{A}\mathrm{E}96}^{'}$) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{K}\mathrm{L}94} $ Eq. (A2)
    T3 atmospheric emissivity ($ {\varepsilon }_{{\mathrm{a}}} $) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{J}\mathrm{X}06} $ (+${E}_{\mathrm{A}\mathrm{E}96}^{'}$) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{J}\mathrm{X}06} $ (+${E}_{\mathrm{M}78}$) (denoted as $ {\varepsilon }_{{\mathrm{a}}\_{\mathrm{J/M}}} $) Eq. (A3) [+ Eq. (A4)]
    T4 atmospheric emissivity ($ {\varepsilon }_{{\mathrm{a}}} $) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{J}\mathrm{X}06} $ (+${E}_{\mathrm{A}\mathrm{E}96}^{'}$) $ {\varepsilon }_{{\mathrm{a}}\_\mathrm{JX}06} $ (+${E}_{\mathrm{AE}96}$) ($ {\varepsilon }_{{\mathrm{a}}\_{\mathrm{J/A}}} $) Eq. (A3) [+ Eq. (A5)]
    T5 air density ($ {\rho }_{{\mathrm{a}}} $, $ \mathrm{k}\mathrm{g}/{\mathrm{m}}^{3} $) $ {\rho }_{{\mathrm{a}}}=1.3 $ kg/m3 $ {\rho }_{{\mathrm{a}}\_{\mathrm{GL}}} $ Eq. (A7)
    T6 specific heat of air [$ {c}_{{\mathrm{p}}} $, $ \mathrm{J}/(\mathrm{k}\mathrm{g} \cdot \mathrm{K}) $] $ {c}_{{\mathrm{p}}}= $1004 J/(kg·K) $ {{c}}_{\mathrm{pw}} $ Eq. (A8)
    T7 latent heat of sublimation ($ {L}_{{\mathrm{s}}} $,$ \mathrm{J}/\mathrm{k}\mathrm{g} $) $ {L}_{{\mathrm{s}}}=2.5\times {10}^{6} $ J/kg $ {L}_{{\mathrm{sw}}} $ Eq. (A9)
    T8 ice conductivity [$ {k}_{{\mathrm{i}}} $, $ \mathrm{W}/(\mathrm{m} \cdot \mathrm{K}) $] $ {k}_{{\mathrm{i}}}=2.03 $ W/(m·K) $ {k}_{{\mathrm{i}}\_\mathrm{U}64} $ (+$ {k}_{0\_\mathrm{N}64}+{S}_{{\mathrm{i}}\_\mathrm{J}94} $) ($ {k}_{{\mathrm{i}}\_{\mathrm{UNJ}}} $) Eq. (A10) [+Eq. (A11) + Eq. (A15)]
    T9 ice conductivity [$ {k}_{{\mathrm{i}}} $, $ \mathrm{W}/(\mathrm{m} \cdot \mathrm{K}) $] $ {k}_{{\mathrm{i}}}=2.03 $ W/(m·K) $ {k}_{{\mathrm{i}}\_\mathrm{U}64} $ (+$ {k}_{0\_\mathrm{S}78}+{S}_{{\mathrm{i}}\_\mathrm{J}94} $) ($ {k}_{{\mathrm{i}}\_{\mathrm{USJ}}} $) Eq. (A10) [+Eq. (A12) + Eq. (A15)]
    T10 ice conductivity [$ {k}_{{\mathrm{i}}} $, $ \mathrm{W}/(\mathrm{m} \cdot \mathrm{K}) $] $ {k}_{{\mathrm{i}}}=2.03 $ W/(m·K) $ {k}_{{\mathrm{i}}\_\mathrm{U}64} $ (+$ {k}_{0\_\mathrm{C}10}+{S}_{{\mathrm{i}}\_\mathrm{J}94} $) ($ {k}_{{\mathrm{i}}\_{\mathrm{UCJ}}} $) Eq. (A10) [+Eq. (A13) + Eq. (A15)]
    T11 ice conductivity [$ {k}_{{\mathrm{i}}} $, $ \mathrm{W}/(\mathrm{m} \cdot \mathrm{K}) $] $ {k}_{{\mathrm{i}}}=2.03 $ W/(m·K) $ {k}_{{\mathrm{i}}\_\mathrm{U}64} $ (+$ {k}_{0\_\mathrm{C}10}+{S}_{{\mathrm{i}}\_\mathrm{C}74} $) ($ {k}_{{\mathrm{i}}\_{\mathrm{UCC}}} $) Eq. (A10) [+Eq. (A13) + Eq. (A14)]
    T12 snow depth ($ {h}_{{\mathrm{s}}} $, m) $ {h}_{{\mathrm{s}}}=0 $ m $ {h}_{{\mathrm{s}}\_\mathrm{D}71}\;(+{k}_{{\mathrm{s1}}}) $ Eq. (A16)
    T13 snow depth ($ {h}_{{\mathrm{s}}} $, m) $ {h}_{{\mathrm{s}}}=0 $ m $ {h}_{{\mathrm{s}}\_\mathrm{M}19}\;(+{k}_{{\mathrm{s1}}}) $ Eq. (A17)
    T14 snow conductivity [$ {k}_{{\mathrm{s}}} $, $ \mathrm{W}/(\mathrm{m} \cdot \mathrm{K}) $] $ {k}_{{\mathrm{s}}1}=0.33 (+{h}_{{\mathrm{s}}\_{\mathrm{M}}19}) $ $ {k}_{{\mathrm{s2}}}=0.21\;(+{h}_{{\mathrm{s}}\_\mathrm{M}19}) $ [+ Eq. (A17)]
    Note: All the symbols and equations in the third and fourth columns are introduced in Appendix.
    下载: 导出CSV

    Table  5.   The mean deviation of TIT for the 14 parameterization schemes with respect to the default scheme

    Test scheme Mean deviation of TIT/%
    TIT=0–0.1 m TIT=0.2–0.3 m TIT=0.4–0.5 m TIT=0–0.5 m
    T1 11.18 12.81 14.34 12.49
    T2 16.11 22.20 17.20 19.25
    T3 0.10 −0.15 −0.46 −0.16
    T4 −0.10 −0.14 −0.20 −0.14
    T5 −2.99 −3.40 −1.92 −3.00
    T6 −0.03 −0.01 0.00 −0.01
    T7 −0.09 −0.08 −0.02 −0.07
    T8 −9.77 9.31 10.50 4.79
    T9 −23.40 −1.40 0.95 −5.95
    T10 −13.84 10.09 11.65 4.29
    T11 −10.72 9.93 11.70 5.05
    T12 −8.09 −23.52 −38.09 −26.02
    T13 −8.09 −33.34 −35.63 −28.23
    T14 −9.25 −41.79 −46.52 −36.44
    Note: Calculations are for the three shown ice thickness bins as well as the average TIT over the entire thickness range of 0–0.5 m.
    下载: 导出CSV

    Table  6.   The sensitivity of the model’s output to increments in TIT of 0.1 m for the 14 parameterization equation schemes

    Test scheme Sensitivity/% Test scheme Sensitivity/%
    T1 0.33 T8 3.64
    T2 0.79 T9 4.36
    T3 −0.07 T10 4.53
    T4 −0.01 T11 3.94
    T5 0 T12 −4.48
    T6 0 T13 −5.03
    T7 0 T14 −6.80
    下载: 导出CSV

    Table  7.   Deviation of the model TIT with respect to the ULS TIT based on the different parameterization schemes

    Scheme Deviation of the model TIT/%
    Ice bin =
    0–5 cm
    Ice bin =
    5–10 cm
    Ice bin =
    10–15 cm
    Ice bin =
    15–20 cm
    Ice bin =
    20–25 cm
    Ice bin =
    25–30 cm
    Ice bin =
    30–35 cm
    Ice bin =
    35–40 cm
    Ice bin =
    40–45 cm
    Def. 9.35 1.92 0.94 0.28 0.06 −0.04 −0.25 −0.18 −0.32
    T1 10.65 2.43 1.05 0.39 0.16 0.00 −0.18 −0.13 −0.25
    T2 10.21 2.13 1.02 0.48 0.14 0.05 −0.11 −0.05 −0.25
    T5 10.73 2.27 1.02 0.54 0.15 0.04 −0.14 −0.03 −0.26
    T8 9.62 1.99 0.98 0.31 0.09 −0.03 −0.23 −0.17 −0.30
    T9 10.59 2.28 1.04 0.45 0.16 0.04 −0.17 −0.09 −0.24
    T12 10.38 2.48 1.04 0.33 0.09 −0.03 −0.23 −0.16 −0.28
    T13 10.17 2.64 1.18 0.28 0.02 −0.08 −0.25 −0.31 −0.29
    T14 10.40 2.36 1.11 0.24 −0.04 −0.09 −0.27 −0.31 −0.34
    Note: The deviation was calculated according to Eq. (7) in Section 3.
    下载: 导出CSV

    Table  8.   Statistics of the difference between the model and ULS TIT based on the different parameterization schemes

    Scheme Bias/m RMSE/m MAE/m R2 ρ
    Def. 0.027 0.103 0.088 0.741 0.861
    T1 0.031 0.101 0.086 0.766 0.875
    T2 0.032 0.106 0.089 0.693 0.832
    T5 0.010 0.100 0.087 0.766 0.875
    T8 0.028 0.101 0.088 0.755 0.869
    T9 0.018 0.106 0.091 0.663 0.814
    T12 0.004 0.120 0.102 0.367 0.606
    T13 −0.004 0.120 0.102 0.407 0.638
    T14 −0.018 0.118 0.102 0.511 0.715
    Note: RMSE is root-mean-square error, MAE is mean absolute error, R2 is the coefficient of determination, ρ is the Pearson’s linear correlation coefficient. The p-value for each scheme is no more than 0.05.
    下载: 导出CSV

    Table  9.   Bias of $ {T}_{{\mathrm{a}}} $ (ERA5 minus IABP measurements) and $ {T}_{{\mathrm{s}}} $ (MODIS minus IABP) for the different ice bins and temperature bins

    Input variable Ice bin/m Bias for different temperature bins/K Bias for all temperature bins/K $ \rho $
    240–245 K 245–250 K 250–255 K 255–260 K 260–265 K 265–270 K
    Ta 0–0.1 −2.08 −1.17 −1.96 −2.84 −3.59 −2.24 0.86
    Ta 0.1–0.2 −1.28 −2.68 −2.64 −4.91 −4.23 −3.19 0.81
    Ta 0.2–0.3 6.62 −0.95 −4.01 −3.39 −5.53 −4.59 −3.81 0.82
    Ta 0.3–0.4 3.42 −2.25 −3.39 −4.92 −5.93 −4.98 −3.80 0.76
    Ta 0.4–0.5 3.77 −3.13 −3.36 −5.41 −5.57 −4.45 −4.05 0.71
    Ta 0–0.5 4.06 −2.11 −3.36 −3.87 −5.31 −4.44 −3.62 0.75
    Ts 0.2–0.3 5.71 3.94 −0.50 −3.69 −0.57 0.47
    Ts 0.3–0.4 5.43 −0.02 −0.62 −5.13 −1.67 0.61
    Ts 0.4–0.5 3.16 −0.90 −0.59 −6.54 −3.78 0.62
    Ts 0–0.5 4.72 0.89 0.08 −3.88 −1.38 0.53
    Note: Correlation coefficients $ \rho $ of the data from the two sources are also shown in the last column. – indicate no data.
    下载: 导出CSV

    Table  10.   Statistics of the difference between ERA5 $ u $ and the observed $ u $ for different ice bins and wind speed bins

    Input variable Ice bin/m Bias for different wind speed bins/(m·s−1) Bias for all wind speed bins/(m·s−1) $ \rho $
    0–5 m/s 5–10 m/s 10–15 m/s 15–20 m/s
    u 0–0.1 0.93 −1.10 −3.61 −5.12 −1.17 0.65
    u 0.1–0.2 1.16 −0.30 −3.76 −4.74 0.07 0.68
    u 0.2–0.3 0.99 −0.54 −2.67 −4.95 −0.15 0.74
    u 0.3–0.4 0.81 −0.94 −3.13 −5.71 −0.41 0.72
    u 0.4–0.5 0.65 −0.99 −4.48 −3.80 −0.35 0.69
    u 0–0.5 0.94 −0.93 −3.54 −5.07 −0.75 0.68
    下载: 导出CSV

    Table  11.   Uncertainty (bias) of TIT due to the uncertainty of the input variables of $ {T}_{{\mathrm{a}}} $, $ {T}_{{\mathrm{s}}} $, and $ u $

    Ice bin/m Bias of TIT/m
    Ta Ts (vs. IABP) Ts (vs. ERA5) u
    0–0.1 0.047 −0.027 0.068 0
    0.1–0.2 0.117 −0.100 0.088 −0.002
    0.2–0.3 0.127 −0.178 0.065 −0.006
    0.3–0.4 0.104 −0.261 0.017 −0.009
    0.4–0.5 0.064 −0.346 −0.045 −0.010
    0–0.5 0.090 −0.200 0.049 −0.005
    Note: Columns 2–5 correspond to the uncertainty of the input variables in Figs 6b, d, f, and 7b.
    下载: 导出CSV
  • Adams S, Willmes S, Schröder D, et al. 2012. Daily thin-ice thickness maps from modis thermal infrared imagery. In: 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich: IEEE, 3265–3268,doi: 10.1109/igarss.2012.6350607
    Adams S, Willmes S, Schröder D, et al. 2013. Improvement and sensitivity analysis of thermal thin-ice thickness retrievals. IEEE Transactions on Geoscience and Remote Sensing, 51(6): 3306–3318, doi: 10.1109/TGRS.2012.2219539
    Alduchov O A, Eskridge R E. 1996. Improved magnus form approximation of saturation vapor pressure. Journal of Applied Meteorology, 35(4): 601–609, doi: 10.1175/1520-0450(1996)035<0601:Imfaos>2.0.Co;2
    Aulicino G, Sansiviero M, Paul S, et al. 2018. A new approach for monitoring the terra nova bay polynya through MODIS ice surface temperature imagery and its validation during 2010 and 2011 winter seasons. Remote Sensing, 10(3): 366, doi: 10.3390/rs10030366
    Bareiss J, Görgen K. 2005. Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Global and Planetary Change, 48(1–3): 28–54, doi: 10.1016/j.gloplacha.2004.12.004
    Cox G F N, Weeks W F. 1974. Salinity variations in sea ice. Journal of Glaciology, 13(67): 109–120, doi: 10.3189/S0022143000023418
    Cuffey K M, Paterson W S B. 2010. The Physics of Glaciers. Burlington: Academic Press, 400–401
    Doronin Y P, Borisenkov E P, Greenberg P. 1970. Thermal interaction of the atmosphere and the hydrosphere in the Arctic. Jerusalem: Israel Program for Scientific Translations, 85
    Drucker R, Martin S, Moritz R. 2003. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. Journal of Geophysical Research: Oceans, 108(C5): 3149, doi: 10.1029/2001JC001213
    Ebner L, Schröder D, Heinemann G. 2011. Impact of Laptev Sea flaw polynyas on the atmospheric boundary layer and ice production using idealized mesoscale simulations. Polar Research, 30: 7210, doi: 10.3402/polar.v30i0.7210
    ECMWF. 2021. IFS documentation CY47R3: Part IV physical processes. In: ECMWF, ed. IFS Documentation CY47R3. Reading UK: ECMWF, 1–214, doi: 10.21957/eyrpir4vj
    Efimova N A. 1961. On methods of calculating monthly values of net long wave radiation. Meteorology and Hydrology (in Russian), 10: 28–33
    Fukamachi Y, Simizu D, Ohshima K I, et al. 2017. Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar. Journal of Glaciology, 63(241): 888–898, doi: 10.1017/jog.2017.56
    Garrett T J, Zhao C F. 2006. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440(7085): 787–789, doi: 10.1038/nature04636
    Goff J A, Gratch S. 1945. Thermodynamic properties of moist air. Transactions of the American Society of Heating and Ventilating Engineers, 51: 125
    Hall D K, Key J R, Casey K A, et al. 2004. Sea ice surface temperature product from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 42(5): 1076–1087, doi: 10.1109/tgrs.2004.825587
    Hall D, Riggs G. 2021. MODIS/Terra sea ice extent 5-min L2 swath 1km, version 61. Boulder: NASA, doi: 10.5067/MODIS/ MOD29.061
    Huntemann M, Heygster G, Kaleschke L, et al. 2014. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations. The Cryosphere, 8(2): 439–451, doi: 10.5194/tc-8-439-2014
    Iwamoto K, Ohshima K I, Tamura T. 2014. Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. Journal of Geophysical Research: Oceans, 119(6): 3574–3594, doi: 10.1002/2013JC009749
    Jin X, Barber D, Papakyriakou T. 2006. A new clear-sky downward longwave radiative flux parameterization for Arctic areas based on rawinsonde data. Journal of Geophysical Research: Atmospheres, 111(D24): D24104, doi: 10.1029/2005JD007039
    Jin Z H, Stamnes K, Weeks W F, et al. 1994. The effect of sea ice on the solar energy budget in the atmosphere-sea ice-ocean system: A model study. Journal of Geophysical Research: Oceans, 99(C12): 25281–25294, doi: 10.1029/94JC02426
    Kacimi S, Kwok R. 2020. The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness. The Cryosphere, 14(12): 4453–4474, doi: 10.5194/tc-14-4453-2020
    Kaleschke L. 2013. SMOS Sea ice retrieval study (SMOSSIce): Final report. ESA ESTEC Contract No: 4000101476/10/NL/C, doi: 10.5281/zenodo.3406130. https://explore.openaire.eu/search/publication?pid=10.5281%2Fzenodo.3406130[2013-12-19/2022-05-06]
    Karvonen J, Cheng B, Vihma T, et al. 2012. A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model. The Cryosphere, 6(6): 1507–1526, doi: 10.5194/tc-6-1507-2012
    Karvonen J, Shi L J, Cheng B, et al. 2017. Bohai sea ice parameter estimation based on thermodynamic ice model and earth observation data. Remote Sensing, 9(3): 234, doi: 10.3390/rs9030234
    Kashiwase H, Ohshima K I, Nakata K, et al. 2021. Improved SSM/I thin ice algorithm with ice type discrimination in coastal polynyas. Journal of Atmospheric and Oceanic Technology, 38(4): 823–835, doi: 10.1175/JTECH-D-20-0145.1
    Kern S, Gade M, Haas C, et al. 2006. Retrieval of thin-ice thickness using the L-band polarization ratio measured by the helicopter-borne scatterometer Heliscat. Annals of Glaciology, 44: 275–280., doi: 10.3189/172756406781811880
    König-Langlo G, Augstein E. 1994. Parameterization of the downward long-wave radiation at the Earth’s surface in polar regions. Meteorologische Zeitschrift, 3(6): 343–347, doi: 10.1127/METZ/3/1994/343
    Koo Y H, Lei R B, Cheng Y B, et al. 2021a. Estimation of thermodynamic and dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data. Remote Sensing of Environment, 267: 112730, doi: 10.1016/j.rse.2021.112730
    Koo Y H, Xie H J, Kurtz N T, et al. 2021b. Weekly mapping of sea ice freeboard in the ross sea from ICESat-2. Remote Sensing, 13(16): 3277, doi: 10.3390/rs13163277
    Kurtz N, Studinger M, Harbeck J, et al. 2015. IceBridge L4 sea ice freeboard, snow depth, and thickness, Version 1. Boulder: NASA, doi: 10.5067/G519SHCKWQV6
    Kwok R, Kacimi S, Markus T, et al. 2019. ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from operation IceBridge. Geophysical Research Letters, 46(20): 11228–11236, doi: 10.1029/2019GL084976
    Kwok R, Kacimi S, Webster M A, et al. 2020. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: a first examination. Journal of Geophysical Research: Oceans, 125(3): e2019JC016008, doi: 10.1029/2019jc016008
    Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36(15): L15501, doi: 10.1029/2009gl039035
    Launiainen J, Vihma T. 1990. Derivation of turbulent surface fluxes—An iterative flux-profile method allowing arbitrary observing heights. Environmental Software, 5(3): 113–124, doi: 10.1016/0266-9838(90)90021-W
    Ledley T S. 1991. Snow on sea ice: Competing effects in shaping climate. Journal of Geophysical Research: Atmospheres, 96(D9): 17195–17208, doi: 10.1029/91JD01439
    Mäkynen M, Cheng B, Similä M. 2013. On the accuracy of thin-ice thickness retrieval using MODIS thermal imagery over Arctic first-year ice. Annals of Glaciology, 54(62): 87–96, doi: 10.3189/2013AoG62A166
    Mäkynen M, Similä M. 2019. Thin ice detection in the barents and kara seas using AMSR2 high-frequency radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 57(10): 7418–7437, doi: 10.1109/tgrs.2019.2913283
    Martin S, Drucker R, Kwok R, et al. 2004. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data, 1990–2001. Journal of Geophysical Research: Oceans, 109(C10): C10012, doi: 10.1029/2004jc002428
    Maykut G A. 1978. Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research: Oceans, 83(C7): 3646–3658, doi: 10.1029/JC083iC07p03646
    Maykut G A. 1982. Large-scale heat exchange and ice production in the central Arctic. Journal of Geophysical Research: Oceans, 87(C10): 7971–7984, doi: 10.1029/JC087iC10p07971
    McHedlishvili A, Spreen G, Melsheimer C, et al. 2022. Weddell Sea polynya analysis using SMOS-SMAP apparent sea ice thickness retrieval. The Cryosphere, 16(2): 471–487, doi: 10.5194/tc-16-471-2022
    Melling H, Riedel D A. 2008. Ice draft and ice velocity data in the beaufort sea, 1990–2003, Version 1. Boulder: NSIDC,doi: 10.7265/N58913S6
    Morison J H, Aagaard K, Moritz R, et al. 2009. North pole environmental observatory (NPEO) oceanographic mooring data, Version 1.0,doi: 10.5065/D6P84921
    Murray J E, Brindley H E, Fox S, et al. 2020. Retrievals of high-latitude surface emissivity across the infrared from high-altitude aircraft flights. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD033672, doi: 10.1029/2020JD033672
    Nakata K, Ohshima K I, Nihashi S. 2019. Estimation of thin-ice thickness and discrimination of ice type from AMSR-E passive microwave data. IEEE Transactions on Geoscience and Remote Sensing, 57(1): 263–276, doi: 10.1109/tgrs.2018.2853590
    Nazintsev Y L. 1964. Thermal balance of the surface of the perennial ice cover in the central Arctic. TrudyArkt Antarkt Nauch-Issled Inst (in Russian), 267: 110–126
    Nihashi S, Kurtz N T, Markus T, et al. 2018. Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data. Annals of Glaciology, 59(76pt2): 101–111, doi: 10.1017/aog.2018.8
    Nihashi S, Ohshima K I. 2001. Relationship between ice decay and solar heating through open water in the Antarctic sea ice zone. Journal of Geophysical Research: Oceans, 106(C8): 16767–16782, doi: 10.1029/2000JC000399
    Ohshima K I, Tamaru N, Kashiwase H, et al. 2020. Estimation of sea ice production in the bering sea from AMSR-E and AMSR2 data, with special emphasis on the anadyr polynya. Journal of Geophysical Research: Oceans, 125(7): e2019JC016023, doi: 10.1029/2019jc016023
    Paţilea C, Heygster G, Huntemann M, et al. 2019. Combined SMAP-SMOS thin sea ice thickness retrieval. The Cryosphere, 13(2): 675–691, doi: 10.5194/tc-13-675-2019
    Paul S, Huntemann M. 2021. Improved machine-learning-based open-water–sea-ice-cloud discrimination over wintertime Antarctic sea ice using MODIS thermal-infrared imagery. The Cryosphere, 15(3): 1551–1565, doi: 10.5194/tc-15-1551-2021
    Paul S, Willmes S, Gutjahr O, et al. 2015a. Spatial feature reconstruction of cloud-covered areas in daily MODIS composites. Remote Sensing, 7(5): 5042–5056, doi: 10.3390/rs70505042
    Paul S, Willmes S, Heinemann G. 2015b. Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery. The Cryosphere, 9(6): 2027–2041, doi: 10.5194/tc-9-2027-2015
    Preußer A, Heinemann G, Willmes S, et al. 2016. Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea. The Cryosphere, 10(6): 3021–3042, doi: 10.5194/tc-10-3021-2016
    Preußer A, Ohshima K I, Iwamoto K, et al. 2019. Retrieval of wintertime sea ice production in arctic polynyas using thermal infrared and passive microwave remote sensing data. Journal of Geophysical Research: Oceans, 124(8): 5503–5528, doi: 10.1029/2019jc014976
    Renfrew I A, Barrell C, Elvidge A D, et al. 2021. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: The impact of sea ice distribution. Quarterly Journal of the Royal Meteorological Society, 147(734): 691–712, doi: 10.1002/qj.3941
    Rothrock D A, Percival D B, Wensnahan M. 2008. The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research: Oceans, 113(C5): C05003, doi: 10.1029/2007JC004252
    Sakatume S, Seki N. 1978. On the thermal properties of ice and snow in a low temperature region. Transactions of the Japan Society of Mechanical Engineers, 44(382): 2059–2069, doi: 10.1299/kikai1938.44.2059
    Shokr M, Lambe A, Agnew T. 2008. A new algorithm (ECICE) to estimate ice concentration from remote sensing observations: an application to 85-GHz passive microwave data. IEEE Transactions on Geoscience and Remote Sensing, 46(12): 4104–4121, doi: 10.1109/TGRS.2008.2000624
    Similä M, Mäkynen M, Cheng B, et al. 2013. Multisensor data and thermodynamic sea-ice model based sea-ice thickness chart with application to the Kara Sea, Arctic Russia. Annals of Glaciology, 54(62): 241–252, doi: 10.3189/2013AoG62A163
    Stroeve J C, Serreze M C, Holland M M, et al. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110(3/4): 1005–1027, doi: 10.1007/s10584-011-0101-1
    Sturm M, Massom R A. 2009. Snow and sea ice. In: Thomas D N, Dieckmann G S, eds. Sea Ice. 2nd ed. Chichester, UK: Wiley-Blackwell, 153–204, doi: 10.1002/9781444317145.ch5
    Sturm M, Perovich D K, Holmgren J. 2002. Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea. Journal of Geophysical Research: Oceans, 107(C10): 8043, doi: 10.1029/2000jc000409
    Tamura T, Ohshima K I. 2011. Mapping of sea ice production in the Arctic coastal polynyas. Journal of Geophysical Research: Oceans, 116(C7): C07030, doi: 10.1029/2010JC006586
    Tamura T, Ohshima K I, Enomoto H, et al. 2006. Estimation of thin sea-ice thickness from NOAA AVHRR data in a polynya off the Wilkes Land coast, East Antarctica. Annals of Glaciology, 44: 269–274
    Toyota T, Ono S, Cho K, et al. 2011. Retrieval of sea-ice thickness distribution in the Sea of Okhotsk from ALOS/PALSAR backscatter data. Annals of Glaciology, 52(57): 177–184, doi: 10.3189/172756411795931732
    Tian-Kunze X, Kaleschke L, Maaß N, et al. 2014. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification. The Cryosphere, 8(3): 997–1018, doi: 10.5194/tc-8-997-2014
    Untersteiner N. 1964. Calculations of temperature regime and heat budget of sea ice in the central Arctic. Journal of Geophysical Research, 69(22): 4755–4766, doi: 10.1029/JZ069i022p04755
    von Albedyll L, Haas C, Dierking W. 2021. Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations. The Cryosphere, 15(5): 2167–2186, doi: 10.5194/tc-15-2167-2021
    Wang Xuanji, Key J R, Liu Yinghui. 2010. A thermodynamic model for estimating sea and lake ice thickness with optical satellite data. Journal of Geophysical Research: Oceans, 115(C12): C12035, doi: 10.1029/2009JC005857
    Willmes S, Krumpen T, Adams S, et al. 2010. Cross-validation of polynya monitoring methods from multisensor satellite and airborne data: a case study for the Laptev Sea. Canadian Journal of Remote Sensing, 36(Sup1): S196–S210, doi: 10.5589/m10-012
    Yu Y, Lindsay R W. 2003. Comparison of thin ice thickness distributions derived from RADARSAT Geophysical Processor System and advanced very high resolution radiometer data sets. Journal of Geophysical Research: Oceans, 108(C12): 3387, doi: 10.1029/2002jc001319
    Yu Y, Rothrock D A. 1996. Thin ice thickness from satellite thermal imagery. Journal of Geophysical Research: Oceans, 101(C11): 25753–25766, doi: 10.1029/96jc02242
    Yu Yining, Xiao Wanxin, Zhang Zhilun, et al. 2021. Evaluation of 2-m air temperature and surface temperature from ERA5 and ERA-I using buoy observations in the arctic during 2010–2020. Remote Sensing, 13(14): 2813, doi: 10.3390/rs13142813
    Zeng Tao, Shi Lijian, Marko M, et al. 2016. Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery. Acta Oceanologica Sinica, 35(7): 96–104, doi: 10.1007/s13131-016-0908-8
    Zine S, Boutin J, Font J, et al. 2008. Overview of the SMOS sea surface salinity prototype processor. IEEE Transactions on Geoscience and Remote Sensing, 46(3): 621–645, doi: 10.1109/tgrs.2008.915543
  • 加载中
图(8) / 表(11)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  99
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-22
  • 录用日期:  2023-05-04
  • 网络出版日期:  2024-01-03
  • 刊出日期:  2024-07-30

目录

    /

    返回文章
    返回