The morphological changes of basal channels based on multi-source remote sensing data at the Pine Island Ice Shelf

Xiangyu Song Zemin Wang Jianbin Song Baojun Zhang Mingliang Liu

Xiangyu Song, Zemin Wang, Jianbin Song, Baojun Zhang, Mingliang Liu. The morphological changes of basal channels based on multi-source remote sensing data at the Pine Island Ice Shelf[J]. Acta Oceanologica Sinica, 2023, 42(12): 90-104. doi: 10.1007/s13131-023-2241-3
Citation: Xiangyu Song, Zemin Wang, Jianbin Song, Baojun Zhang, Mingliang Liu. The morphological changes of basal channels based on multi-source remote sensing data at the Pine Island Ice Shelf[J]. Acta Oceanologica Sinica, 2023, 42(12): 90-104. doi: 10.1007/s13131-023-2241-3

doi: 10.1007/s13131-023-2241-3

The morphological changes of basal channels based on multi-source remote sensing data at the Pine Island Ice Shelf

Funds: The National Natural Science Foundation of China under contract Nos 41941010 and 42006184; the Fundamental Research Funds for the Central Universities under contract No. 2042022kf1068; the Independent Scientific Research Project of the State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  Pine Island Ice Shelf. The box in the upper left figure indicates the location of the study area. The colored lines in the figure correspond to different types of basal channels. The blue base layer represents surface elevation data for Pine Island Ice Shelf. The short black lines (A–F) represent the OIB flight paths.

    Figure  2.  The sampling location of modified circumpolar deep water/circumpolar deep water (blue), SST (green), and surface melting days (SMD, red). The base map is Mosaic of Antarctic superimposed by Reference Elevation Model of Antarctica.

    Figure  3.  Monthly and 12-month sliding average SST during 2000–2020.

    Figure  4.  Time series of seawater temperature near the calving front of the Pine Island Ice Shelf with moored CTD at 430 m underwater.

    Figure  5.  Pine Island wind field data. The arrow points in the direction of the wind and the color represents the wind speed value.

    Figure  6.  SMD at Pine Island Ice Shelf. Solid gray lines represent the SMD at 6 points as shown in Fig. 2. The red line is the average number of melting days at the 6 locations.

    Figure  7.  Pine Island calving front changes. The red box in the upper left figure indicates the location of the study area. Each color line corresponds to the calving front of the ice shelf in different years.

    Figure  8.  Extraction and analysis of ice shelf basal channel. A1, A2 and A3 represent the position of the same point on the ice shelf surface in 2013, 2014 and 2015, respectively.

    Figure  9.  Schematic diagram of determining the basal channel position through OIB data, A–F corresponding to the position of the black letter mark in Fig. 1. The orange area represents the position and correspondence between the basal channel and the surface depression.

    Figure  10.  Sampling location of grounding-line-sourced basal channels of the east branch (a), and orresponding to the elevation time series of the surface depression at transects areas located in a using ICESat-1 (I1) and ICESat-2 (I2) (b−d). The red dotted box in the upper left corner marks the approximate location of the east branch. The black square represents the uniform elevation point.

    Figure  11.  Monthly temperature change curve from 2004 to 2008. The location is shown in Fig. 2 with green dot.

    Figure  12.  Bedrock elevation near the east branch of the Pine Island Ice Shelf. The solid black line represents the grounding line location. The solid green line represents the grounding-line-sourced basal channel. The blue dashed boxes mark two bedrock bulges at this location.

    Figure  13.  The elevation time series of the surface depression at Transect F is shown in Fig. 1 by using ICESat-1 (I1).

    Figure  14.  The elevation time series of the surface depression at transects areas of C−E is shown in Fig. 1 by combining ICESat-1 (I1), ICESat-2 (I2), and OIB (IB). a. Grounding-line-sourced basal channel. b. Subglacially-sourced basal channel. c. Ocean-sourced basal channel.

    Figure  15.  SST during 2008–2012. a. Monthly SST change; b. annual average SST change.

    Figure  16.  SST during 2007–2009. The location is shown in Fig. 2 with green dot.

    A1.  Wind filed of the Pine Island.

    Table  1.   Calving area and calving front retreat distance of Pine Island Ice Shelf

    YearRetreat distance/kmCalving area/km2
    下载: 导出CSV
  • Alley K E, Scambos T A, Siegfried M R, et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience, 9(4): 290–293. doi: 10.1038/Ngeo2675
    Aoki S, Takahashi T, Yamazaki K, et al. 2022. Warm surface waters increase Antarctic ice shelf melt and delay dense water formation. Communications Earth & Environment, 3: 142. doi: 10.1038/s43247-022-00456-z
    Bindschadler R, Vaughan D G, Vornberger P. 2011. Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica. Journal of Glaciology, 57(204): 581–595. doi: 10.3189/002214311797409802
    Blanchard-Wrigglesworth E, Roach L A, Donohoe A, et al. 2021. Impact of winds and southern ocean SSTs on Antarctic sea ice trends and variability. Journal of Climate, 34(3): 949–965. doi: 10.1175/Jcli-D-20-0386.1
    Borsa A A, Moholdt G, Fricker H A, et al. 2014. A range correction for ICESat and its potential impact on ice-sheet mass balance studies. The Cryosphere, 8(2): 345–357. doi: 10.5194/tc-8-345-2014
    Borstad C P, Rignot E, Mouginot J, et al. 2013. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. The Cryosphere, 7(6): 1931–1947. doi: 10.5194/tc-7-1931-2013
    Brabyn L, Stichbury G. 2020. Calculating the surface melt rate of Antarctic glaciers using satellite-derived temperatures and stream flows. Environmental Monitoring and Assessment, 192(7): 440. doi: 10.1007/s10661-020-08396-x
    Breton D J, Baker I, Cole D M. 2016. Microstructural evolution of polycrystalline ice during confined creep testing. Cold Regions Science and Technology, 127: 25–36. doi: 10.1016/j.coldregions.2016.03.009
    Brucker L, Markus T. 2013. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research: Oceans, 118(6): 2892–2905. doi: 10.1002/jgrc.20228
    Cazenave A, Llovel W. 2010. Contemporary sea level rise. Annual Review of Marine Science, 2: 145–173. doi: 10.1146/annurev-marine-120308-081105
    Chartrand A M, Howat I M. 2020. Basal channel evolution on the Getz Ice Shelf, West Antarctica. Journal of Geophysical Research: Earth Surface, 125(9): e2019JF005293. doi: 10.1029/2019JF005293
    Christmann J, Plate C, Müller R, et al. 2016. Viscous and viscoelastic stress states at the calving front of Antarctic ice shelves. Annals of Glaciology, 57(73): 10–18. doi: 10.1017/aog.2016.18
    Costi J, Arigony-Neto J, Braun M, et al. 2018. Estimating surface melt and runoff on the Antarctic Peninsula using ERA-Interim reanalysis data. Antarctic Science, 30(6): 379–393. doi: 10.1017/S0954102018000391
    Derkani M H, Alberello A, Nelli F, et al. 2021. Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition. Earth System Science Data, 13(3): 1189–1209. doi: 10.5194/essd-13-1189-2021
    Dinniman M S, Klinck J M, Smith W O. 2011. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Research Part II: Topical Studies in Oceanography, 58(13–16): 1508–1523,
    Donat-Magnin M, Jourdain N C, Kittel C, et al. 2021. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere, 15(2): 571–593. doi: 10.5194/tc-15-571-2021
    Dong Yuting, Zhao Ji, Floricioiu D, et al. 2021. High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic. The Cryosphere, 15(9): 4421–4443. doi: 10.5194/tc-15-4421-2021
    Dutrieux P, Stewart C, Jenkins A, et al. 2014. Basal terraces on melting ice shelves. Geophysical Research Letters, 41(15): 5506–5513. doi: 10.1002/2014gl060618
    Dutrieux P, Vaughan D G, Corr H F J, et al. 2013. Pine Island glacier ice shelf melt distributed at kilometre scales. The Cryosphere, 7(5): 1543–1555. doi: 10.5194/tc-7-1543-2013
    Fair Z, Flanner M, Brunt K M, et al. 2020. Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere, 14(11): 4253–4263. doi: 10.5194/tc-14-4253-2020
    Farrell S L, Kurtz N, Connor L N, et al. 2012. A first assessment of IceBridge snow and ice thickness data over Arctic Sea Ice. IEEE Transactions on Geoscience and Remote Sensing, 50(6): 2098–2111. doi: 10.1109/Tgrs.2011.2170843
    Fretwell P, Pritchard H D, Vaughan D G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1): 375–393. doi: 10.5194/tc-7-375-2013
    Fricker H A, Padman L. 2006. Ice shelf grounding zone structure from ICESat laser altimetry. Geophysical Research Letters, 33(15): L15502. doi: 10.1029/2006gl026907
    Fürst J J, Durand G, Gillet-Chaulet F, et al. 2016. The safety band of Antarctic ice shelves. Nature Climate Change, 6(5): 479–482. doi: 10.1038/Nclimate2912
    Gladish C V, Holland D M, Holland P R, et al. 2012. Ice-shelf basal channels in a coupled ice/ocean model. Journal of Glaciology, 58(212): 1227–1244. doi: 10.3189/2012JoG12J003
    Greene C A, Blankenship D D, Gwyther D E, et al. 2017. Wind causes Totten Ice Shelf melt and acceleration. Science Advances, 3(11): e1701681. doi: 10.1126/sciadv.1701681
    Haseloff M, Sergienko O V. 2018. The effect of buttressing on grounding line dynamics. Journal of Glaciology, 64(245): 417–431. doi: 10.1017/jog.2018.30
    Hofstede C, Beyer S, Corr H, et al. 2021. Evidence for a grounding line fan at the onset of a basal channel under the ice shelf of Support Force Glacier, Antarctica, revealed by reflection seismics. The Cryosphere, 15(3): 1517–1535. doi: 10.5194/tc-15-1517-2021
    Howat I M, Porter C, Smith B E, et al. 2019. The reference elevation model of Antarctica. The Cryosphere, 13(2): 665–674. doi: 10.5194/tc-13-665-2019
    Jacobs S S, Jenkins A, Giulivi C F, et al. 2011. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nature Geoscience, 4(8): 519–523. doi: 10.1038/Ngeo1188
    Jenkins A, Dutrieux P, Jacobs S S, et al. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience, 3(7): 468–472. doi: 10.1038/Ngeo890
    Johnson A, Hock R, Fahnestock M. 2022. Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data. Journal of Glaciology, 68(269): 533–546. doi: 10.1017/jog.2021.112
    Joughin I, Smith B E, Holland D M. 2010. Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37(20): L20502. doi: 10.1029/2010gl044819
    Kurtz N T, Farrell S L. 2011. Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophysical Research Letters, 38(20): L20505. doi: 10.1029/2011gl049216
    Lilien D A, Joughin I, Smith B, et al. 2019. Melt at grounding line controls observed and future retreat of Smith, Pope, and Kohler glaciers. The Cryosphere, 13(11): 2817–2834. doi: 10.5194/tc-13-2817-2019
    Liu Yan, Moore J C, Cheng Xiao, et al. 2015. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proceedings of the National Academy of Sciences of the United States of America, 112(11): 3263–3268. doi: 10.1073/pnas.1415137112
    Mankoff K D, Jacobs S S, Tulaczyk S M, et al. 2012. The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica. Annals of Glaciology, 53(60): 123–128. doi: 10.3189/2012AoG60A062
    Marsh O J, Fricker H A, Siegfried M R, et al. 2016. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophysical Research Letters, 43(1): 250–255. doi: 10.1002/2015gl066612
    Mayer C, Schaffer J, Hattermann T, et al. 2018. Large ice loss variability at Nioghalvfjerdsfjorden Glacier, Northeast-Greenland. Nature Communications, 9: 2768. doi: 10.1038/s41467-018-05180-x
    Meierbachtol T, Harper J, Humphrey N. 2013. Basal drainage system response to increasing surface melt on the Greenland ice sheet. Science, 341(6147): 777–779. doi: 10.1126/science.1235905
    Millgate T, Holland P R, Jenkins A, et al. 2013. The effect of basal channels on oceanic ice-shelf melting. Journal of Geophysical Research: Oceans, 118(12): 6951–6964. doi: 10.1002/2013jc009402
    Mouginot J, Rignot E, Scheuchl B, et al. 2015. Fast retreat of Zachariae Isstrom, northeast Greenland. Science, 350(6266): 1357–1361. doi: 10.1126/science.aac7111
    Nakayama Y, Timmermann R, Schröder M, et al. 2014. On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf. Ocean Modelling, 84: 26–34. doi: 10.1016/j.ocemod.2014.09.007
    Noh M J, Howat I M. 2017. The surface extraction from TIN based search-space minimization (SETSM) algorithm. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 55–76. doi: 10.1016/j.isprsjprs.2017.04.019
    Oza S R. 2015. Spatial-temporal patterns of surface melting observed over Antarctic ice shelves using scatterometer data. Antarctic Science, 27(4): 403–410. doi: 10.1017/S0954102014000832
    Pegler S S. 2018. Marine ice sheet dynamics: the impacts of ice-shelf buttressing. Journal of Fluid Mechanics, 857: 605–647. doi: 10.1017/jfm.2018.741
    Pritchard H D, Ligtenberg S R M, Fricker H A, et al. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395): 502–505. doi: 10.1038/nature10968
    Rignot E, Mouginot J. 2012. Ice flow in Greenland for the international polar year 2008–2009. Geophysical Research Letters, 39(11): L11501. doi: 10.1029/2012gl051634
    Rignot E, Steffen K. 2008. Channelized bottom melting and stability of floating ice shelves. Geophysical Research Letters, 35(2): L02503. doi: 10.1029/2007gl031765
    Sergienko O V. 2013. Basal channels on ice shelves. Journal of Geophysical Research: Earth Surface, 118(3): 1342–1355. doi: 10.1002/jgrf.20105
    Song Min, Cole D M, Baker I. 2006a. Investigation of Newtonian creep in polycrystalline ice. Philosophical Magazine Letters, 86(12): 763–771. doi: 10.1080/09500830601023787
    Song Min, Cole D M, Baker I. 2006b. An investigation of the effects of particles on creep of polycrystalline ice. Scripta Materialia, 55(1): 91–94. doi: 10.1016/j.scriptamat.2006.03.029
    Stewart A L, Chi Xiaoyang, Solodoch A, et al. 2021. High-frequency fluctuations in Antarctic bottom water transport driven by southern ocean winds. Geophysical Research Letters, 48(17): e2021GL094569. doi: 10.1029/2021GL094569
    Stewart C L, Christoffersen P, Nicholls K W, et al. 2019. Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya. Nature Geoscience, 12(6): 435–440. doi: 10.1038/s41561-019-0356-0
    Sun Weiwei, Wang Ruisheng. 2018. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM. IEEE Geoscience and Remote Sensing Letters, 15(3): 474–478. doi: 10.1109/Lgrs.2018.2795531
    Thoma M, Jenkins A, Holland D, et al. 2008. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophysical Research Letters, 35(18): L18602. doi: 10.1029/2008gl034939
    Tschudi M A, Stroeve J C, Stewart J S. 2016. Relating the age of Arctic Sea Ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sensing, 8(6): 457. doi: 10.3390/rs8060457
    Vaughan D G, Corr H F J, Bindschadler R A, et al. 2012. Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica. Journal of Geophysical Research: Earth Surface, 117(F3): F03012. doi: 10.1029/2012jf002360
    Wang Zemin, Song Xiangyu, Zhang Baojun, et al. 2020. Basal channel extraction and variation analysis of Nioghalvfjerdsfjorden ice shelf in Greenland. Remote Sensing, 12(9): 1474. doi: 10.3390/rs12091474
    Washam P, Nicholls K W, Münchow A, et al. 2019. Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt. Journal of Glaciology, 65(252): 662–674. doi: 10.1017/jog.2019.43
    Wearing M G, Hindmarsh R C A, Worster M G. 2015. Assessment of ice flow dynamics in the zone close to the calving front of Antarctic ice shelves. Journal of Glaciology, 61(230): 1194–1206. doi: 10.3189/2015JoG15J116
    Xia Wentao, Xie Hongjie. 2018. Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat-2 using Operation IceBridge Airborne altimetry datasets. Remote Sensing of Environment, 204: 456–471. doi: 10.1016/j.rse.2017.10.010
  • 加载中
图(19) / 表(1)
  • 文章访问数:  353
  • HTML全文浏览量:  164
  • PDF下载量:  26
  • 被引次数: 0
  • 收稿日期:  2022-12-17
  • 录用日期:  2023-04-17
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-12-01