Seasonal influence of freshwater discharge on spatio-temporal variations in primary productivity, sea surface temperature, and euphotic zone depth in the northern Bay of Bengal

Hafez Ahmad Felix Jose Md. Simul Bhuyan Md. Nazrul Islam Padmanava Dash

Hafez Ahmad, Felix Jose, Md. Simul Bhuyan, Md. Nazrul Islam, Padmanava Dash. Seasonal influence of freshwater discharge on spatio-temporal variations in primary productivity, sea surface temperature, and euphotic zone depth in the northern Bay of Bengal[J]. Acta Oceanologica Sinica, 2024, 43(6): 1-14. doi: 10.1007/s13131-023-2254-y
Citation: Hafez Ahmad, Felix Jose, Md. Simul Bhuyan, Md. Nazrul Islam, Padmanava Dash. Seasonal influence of freshwater discharge on spatio-temporal variations in primary productivity, sea surface temperature, and euphotic zone depth in the northern Bay of Bengal[J]. Acta Oceanologica Sinica, 2024, 43(6): 1-14. doi: 10.1007/s13131-023-2254-y

doi: 10.1007/s13131-023-2254-y

Seasonal influence of freshwater discharge on spatio-temporal variations in primary productivity, sea surface temperature, and euphotic zone depth in the northern Bay of Bengal

Funds: The US Department of State for sponsoring undergraduate exchange program.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of the Bay of Bengal and the five zones ( Z1−Z5) identified for studying the NPP, SST, SSS, MLD, and EZD variability (coastline data retrieved from https://www.naturalearthdata.com and Bathymetric data from https://www.gebco.net).

    Figure  2.  Prevailing northeast and southwest monsoons in the Bay of Bengal and the Arabian Sea. The arrow indicates the direction of wind flow.

    Figure  3.  Freshwater discharge (m3/s) from the six major rivers flowing into the Bay of Bengal. Monthly discharge rates for the Brahmaputra River, Ganges River, Irrawaddy River, Mahanadi River, Godavari River, and Krishna River. Data was retrieved from the Global Runoff Data Centre at https://portal.grdc.bafg.de/.

    Figure  4.  Monthly net primary productivity (NPP, in terms of C) maps in the northern Bay of Bengal.

    Figure  5.  Monthly net primary productivity (NPP, in terms of C) distribution.

    Figure  6.  Seasonal net primary productivity (NPP, in terms of C) maps in the northern Bay of Bengal.

    Figure  7.  Monthly-averaged sea surface salinity maps in the northern Bay of Bengal.

    Figure  8.  Seasonal average sea surface salinity maps in the northern Bay of Bengal.

    Figure  9.  Monthly-averaged sea surface temperature (SST) maps.

    Figure  10.  Monthly averaged sea surface temperature distribution from the five zones.

    Figure  11.  Seasonal sea surface temperature (SST) distribution.

    Figure  12.  Monthly distribution of euphotic depth. a−l presents months from January to December.

    Figure  13.  Inter-annual distribution of mixed layer depth (MLD) (a), net primary productivity (NPP, in terms of C) (b), sea surface temperature (SST) (c), and sea surface salinity (SSS) (d).

    Figure  14.  Correlation between net primary productivity (NPP, in terms of C) and mixed layer depth (MLD).

    Figure  15.  Correlation between sea surface temperature (SST) and net primary productivity (NPP, in terms of C) in five different zones.

    Figure  16.  Correlation between net primary productivity (NPP, in terms of C) and euphotic depth.

    Table  1.   Seasonal NPP average and variability

    Zone NPP average (in terms of C)/(mg·m−2·d−1) NPP variability (in terms of C)/(mg·m−2·d−1)
    Northeast monsoon Pre-monsoon Southwest monsoon Northeast monsoon Pre-monsoon Southwest monsoon
    Z1 2566.30 1484.98 2074.39 2696.37 1500.52 1637.74
    Z2 4033.14 3844.31 4379.77 1582.55 4049.19 3523.57
    Z3 854.64 2022.13 827.24 694.11 1037.27 1129.52
    Z4 388.73 400.02 563.99 64.87 134.33 184.57
    Z5 634.32 969.46 919.49 612.74 1259.97 770.60
    下载: 导出CSV

    Table  2.   Seasonal sea surface salinity (SSS) average and variability

    Zone SSS average SSS variability
    Northeast monsoon Pre-monsoon Southwest monsoon Northeast monsoon Pre-monsoon Southwest monsoon
    Z1 25.842 32.144 27.024 2.279 0.480 2.670
    Z2 20.710 32.144 19.807 4.820 3.899 6.671
    Z3 28.779 32.144 30.856 0.987 0.332 1.020
    Z4 30.214 32.144 31.258 1.073 0.282 0.976
    Z5 28.211 32.144 30.786 1.096 0.529 1.280
    下载: 导出CSV

    Table  3.   Seasonal sea surface temperature (SST) average and variability

    Zone SST average/℃ SST variability/℃
    Northeast monsoon Pre-monsoon Southwest monsoon Northeast monsoon Pre-monsoon Southwest monsoon
    Z1 27.65 28.47 29.76197 0.339 0.581 0.513
    Z2 27.81 28.95 29.72703 0.660 1.025 0.593
    Z3 28.10 28.52 29.59749 0.216 0.643 0.374
    Z4 28.28 28.72 29.24756 0.130 0.147 0.102
    Z5 28.87 28.84 29.3195 0.868 1.218 0.678
    下载: 导出CSV
  • Abdul-Hadi A, Mansor S, Pradhan B, et al. 2013. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon—a remote sensing study. Environmental Monitoring and Assessment, 185(5): 3977–3991, doi: 10.1007/s10661-012-2843-2
    Akhil V P, Durand F, Lengaigne M, et al. 2014. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. Journal of Geophysical Research: Oceans, 119(6): 3926–3947, doi: 10.1002/2013JC009632
    Alory G, Wijffels S, Meyers G. 2007. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophysical Research Letters, 34(2): L02606
    Arthur M A, Zachos J C, Jones D S. 1987. Primary productivity and the Cretaceous/Tertiary boundary event in the oceans. Cretaceous Research, 8(1): 43–54, doi: 10.1016/0195-6671(87)90011-5
    Balch W, Evans R, Brown J, et al. 1992. The remote sensing of ocean primary productivity: use of a new data compilation to test satellite algorithms. Journal of Geophysical Research: Oceans, 97(C2): 2279–2293, doi: 10.1029/91JC02843
    Behrenfeld M J. 2014. Climate-mediated dance of the plankton. Nature Climate Change, 4(10): 880–887, doi: 10.1038/nclimate2349
    Behrenfeld M J, Falkowski P G. 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42(1): 1–20, doi: 10.4319/lo.1997.42.1.0001
    Behrenfeld M J, O’Malley R T, Siegel D A, et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444(7120): 752–755, doi: 10.1038/nature05317
    Bharathi M D, Sarma V V S S, Ramaneswari K, et al. 2018. Influence of river discharge on abundance and composition of phytoplankton in the western coastal Bay of Bengal during peak discharge period. Marine Pollution Bulletin, 133: 671–683, doi: 10.1016/j.marpolbul.2018.06.032
    Capuzzo E, Lynam C P, Barry J, et al. 2018. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Global Change Biology, 24(1): e352–e364
    Chaitanya A V S, Durand F, Mathew S, et al. 2015. Observed year-to-year sea surface salinity variability in the Bay of Bengal during the 2009–2014 period. Ocean Dynamics, 65(2): 173–186, doi: 10.1007/s10236-014-0802-x
    Chambers D P, Tapley B D, Stewart R H. 1999. Anomalous warming in the Indian Ocean coincident with El Niño. Journal of Geophysical Research: Oceans, 104(C2): 3035–3047, doi: 10.1029/1998JC900085
    Currie J C, Lengaigne M, Vialard J, et al. 2013. Indian Ocean dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, 10(10): 6677–6698, doi: 10.5194/bg-10-6677-2013
    D’Mello J R, Prasanna Kumar S. 2016. Why is the Bay of Bengal experiencing a reduced rate of sea surface warming?. International Journal of Climatology, 36(3): 1539–1548
    Diaz R J, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891): 926–929, doi: 10.1126/science.1156401
    Dong Lu, Zhou Tianjun, Wu Bo. 2014. Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dynamics, 42(1–2): 203–217, doi: 10.1007/s00382-013-1722-z
    Dunstan P K, Foster S D, King E, et al. 2018. Global patterns of change and variation in sea surface temperature and chlorophyll a. Scientific Reports, 8(1): 14624, doi: 10.1038/s41598-018-33057-y
    Frey K E, Comiso J C, Cooper L W, et al. 2017. Arctic Ocean primary productivity. Arctic Report Card 2017, NOAA. http://Www.Arctic.Noaa.Gov/Report-Card/Report-Card-2017/ArtMID/7798/ArticleID/701/Arctic-Ocean-Primary-Productivity[2017–05–23/2022–07–08]
    Frolov S, Ryan J P, Chavez F P. 2012. Predicting euphotic-depth-integrated chlorophyll-a from discrete-depth and satellite-observable chlorophyll-a off central California. Journal of Geophysical Research: Oceans, 117(C5): C05042
    George J V, Nuncio M, Chacko R, et al. 2013. Role of physical processes in chlorophyll distribution in the western tropical Indian Ocean. Journal of Marine Systems, 113–114: 1–12
    Gopalakrishna V V, Murty V S N, Sengupta D, et al. 2002. Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991. Continental Shelf Research, 22(5): 791–802, doi: 10.1016/S0278-4343(01)00084-X
    Hendiarti N, Siegel H, Ohde T. 2004. Investigation of different coastal processes in Indonesian waters using SeaWiFS data. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(1–3): 85–97, doi: 10.1016/j.dsr2.2003.10.003
    Hossain M S, Sarker S, Sharifuzzaman S M, et al. 2020. Primary productivity connects hilsa fishery in the Bay of Bengal. Scientific Reports, 10(1): 5659, doi: 10.1038/s41598-020-62616-5
    Hoyer S, Hamman J. 2017. xarray: N-D labeled arrays and datasets in Python. Journal of Open Research Software, 5(1): 10, doi: 10.5334/jors.148
    Hussain M G, Hoq E. 2010. Sustainable Management of Fisheries Resources of the Bay of Bengal. Bangladesh: Support to Sustainable Management of the BOBLME Project
    Jaswal A K, Singh V, Bhambak S R. 2012. Relationship between sea surface temperature and surface air temperature over Arabian Sea, Bay of Bengal and Indian Ocean. The Journal of Indian Geophysical Union, 16(2): 41–53
    Kay S, Caesar J, Janes T. 2018. Marine dynamics and productivity in the Bay of Bengal. In: Nicholls R J, Hutton C W, Adger W N, et al, eds. Ecosystem Services for Well-Being in Deltas. Cham: Palgrave Macmillan
    Kong Fanping, Dong Qing, Xiang Kunsheng, et al. 2019. Spatiotemporal variability of remote sensing ocean net primary production and major forcing factors in the Tropical Eastern Indian and Western Pacific Ocean. Remote Sensing, 11(4): 391, doi: 10.3390/rs11040391
    Latha T P, Rao K H, Nagamani P V, et al. 2015. Impact of cyclone PHAILIN on chlorophyll-a concentration and productivity in the Bay of Bengal. International Journal of Geosciences, 6(5): 473–480, doi: 10.4236/ijg.2015.65037
    Levitus S, Antonov J I, Wang Julian, et al. 2001. Anthropogenic warming of Earth’s climate system. Science, 292(5515): 267–270, doi: 10.1126/science.1058154
    Mahesh R, Saravanakumar A, Thangaradjou T, et al. 2020. Seasonal and spatial variations of mesozooplankton energy transfer efficiency determined using remotely sensed SST and Chl-a in the Bay of Bengal. Regional Studies in Marine Science, 40: 101482, doi: 10.1016/j.rsma.2020.101482
    Mohanty S S, Pramanik D S, Dash B P. 2014. Primary productivity of Bay of Bengal at Chandipur in Odisha, India. International Journal of Scientific and Research Publications, 4(10): 1–6
    Mutshinda C M, Finkel Z V, Irwin A J. 2013. Which environmental factors control phytoplankton populations?. A Bayesian variable selection approach. Ecological Modelling, 269: 1–8, doi: 10.1016/j.ecolmodel.2013.07.025
    Narvekar J, Prasanna Kumar S. 2014. Mixed layer variability and chlorophyll a biomass in the Bay of Bengal. Biogeosciences, 11(14): 3819–3843, doi: 10.5194/bg-11-3819-2014
    Prakash K R, Pant V. 2020. On the wave-current interaction during the passage of a tropical cyclone in the Bay of Bengal. Deep-Sea Research Part II: Topical Studies in Oceanography, 172: 104658, doi: 10.1016/j.dsr2.2019.104658
    Pramanik S, Mandal S, Shee A, et al. 2019. Tidal circulation studies using regional model in the Bay of Bengal. In: Murali K, Sriram V, Samad A, et al, eds. Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). Singapore: Springer, 829–836
    Prasanna Kumar S, Muraleedharan P M, Prasad T G, et al. 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?. Geophysical Research Letters, 29(24): 2235, doi: 10.1029/2002GL016013
    Rahman M H. 2007. Legal Regime of Marine Environment in the Bay of Bengal Vol. 1. New Delhi: Atlantic Publishers & Distributors (P) Ltd. , 38–39
    Raymont J E G. 2014. Plankton & productivity in the oceans: Volume 1: Phytoplankton. 2nd ed. Vol. 1. New York: Elsevier, Pergamon Press Inc. , Maxwell House, Fairview Park, Elmsford, 65–66
    Raymont J E G. 2014. Plankton & Productivity in the Oceans. Volume 1: Phytoplankton. Oxford: Pergamon Press
    Roemmich D, John Gould W, Gilson J. 2012. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nature Climate Change, 2(6): 425–428, doi: 10.1038/nclimate1461
    Saikranthi K, Radhakrishna B, Thota N R, et al. 2019. Differences in the association of sea surface temperature—precipitating systems over the Bay of Bengal and the Arabian Sea during southwest monsoon season. International Journal of Climatology, 39(11): 4305–4312, doi: 10.1002/joc.6074
    Sakalli A. 2017. Sea surface temperature change in the Mediterranean Sea under climate change: a linear model for simulation of the sea surface temperature up to 2100. Applied Ecology and Environmental Research, 15(1): 707–716, doi: 10.15666/aeer/1501_707716
    Salgado-Hernanz P M, Racault M F, Font-Muñoz J S, et al. 2019. Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing. Remote Sensing of Environment, 221: 50–64, doi: 10.1016/j.rse.2018.10.036
    Sandeep K K, Pant V. 2019. Riverine freshwater plume variability in the Bay of Bengal using wind sensitivity experiments. Deep-Sea Research Part II: Topical Studies in Oceanography, 168: 104649, doi: 10.1016/j.dsr2.2019.104649
    Sarker S, Panassa E, Hossain M S, et al. 2020. A bio-physicochemical perspective of the Bay of Bengal. Journal of the Marine Biological Association of the United Kingdom, 100(4): 517–528, doi: 10.1017/S0025315420000442
    Sarker S, Wiltshire K H. 2017. Phytoplankton carrying capacity: is this a viable concept for coastal seas?. Ocean & Coastal Management, 148: 1–8,doi: 10.1016/j.ocecoaman.2017.07.015
    Satpathy K K, Mohanty A K, Sahu G, et al. 2011. Spatio-temporal variation in physicochemical properties of coastal waters off Kalpakkam, southeast coast of India, during summer, pre-monsoon and post-monsoon period. Environmental Monitoring and Assessment, 180(1–4): 41–62, doi: 10.1007/s10661-010-1771-2
    Shamsuzzaman M, Islam M M, Tania N J, et al. 2017. Fisheries resources of Bangladesh: present status and future direction. Aquaculture and Fisheries, 2(4): 145–156, doi: 10.1016/j.aaf.2017.03.006
    Shanthi R, Poornima D, Raja K, et al. 2015. Inter-annual and seasonal variations in hydrological parameters and its implications on chlorophyll a distribution along the southwest coast of Bay of Bengal. Acta Oceanologica Sinica, 34(6): 94–100, doi: 10.1007/s13131-015-0689-5
    Shetye S R, Gouveia A D, Shankar D, et al. 1996. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research: Oceans, 101(C6): 14011–14025, doi: 10.1029/95JC03307
    Shetye S R, Shenoi S S C, Gouveia A D, et al. 1991. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Continental Shelf Research, 11(11): 1397–1408, doi: 10.1016/0278-4343(91)90042-5
    Sridevi B, Sarma V V S S. 2020. A revisit to the regulation of oxygen minimum zone in the Bay of Bengal. Journal of Earth System Science, 129(1): 107, doi: 10.1007/s12040-020-1376-2
    Thushara V, Vinayachandran P N. 2016. Formation of summer phytoplankton bloom in the northwestern Bay of Bengal in a coupled physical-ecosystem model. Journal of Geophysical Research: Oceans, 121(12): 8535–8550, doi: 10.1002/2016JC011987
    Vinayachandran P N, Kurian J. 2007. Hydrographic observations and model simulation of the Bay of Bengal freshwater plume. Deep-Sea Research Part I: Oceanographic Research Papers, 54(4): 471–486, doi: 10.1016/j.dsr.2007.01.007
    Wiggert J D, Vialard J, Behrenfeld M J. 2009. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. In: Wiggert J D, Hood R R, Naqvi S W A, et al, eds. Indian Ocean Biogeochemical Processes and Ecological Variability. Washington: American Geophysical Union
    Zhou Xinquan, Duchamp-Alphonse S, Kageyama M, et al. 2020. Dynamics of primary productivity in the northeastern Bay of Bengal over the last 26 000 years. Climate of the Past, 16(5): 1969–1986, doi: 10.5194/cp-16-1969-2020
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  95
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 录用日期:  2023-09-11
  • 网络出版日期:  2024-03-20
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回