Spatial epifaunal variability partially masked the edge effects in patchy intertidal macroalgae from the Canary archipelago

Alejandro Espada-Pastor Rodrigo Riera

Alejandro Espada-Pastor, Rodrigo Riera. Spatial epifaunal variability partially masked the edge effects in patchy intertidal macroalgae from the Canary archipelago[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-0001-2
Citation: Alejandro Espada-Pastor, Rodrigo Riera. Spatial epifaunal variability partially masked the edge effects in patchy intertidal macroalgae from the Canary archipelago[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-0001-2

doi: 10.1007/s13131-024-0001-2

Spatial epifaunal variability partially masked the edge effects in patchy intertidal macroalgae from the Canary archipelago

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of the island of Gran Canaria, showing the study locations.

    Figure  2.  An intertidal sampled patch showing the three parts (edge, near edge and inner area).

    Figure  3.  Individual abundance of epifauna at both sites.

    Figure  4.  Species richness of epifauna at both sites.

    Figure  5.  NMDS showing the patch sites (edge, near edge and inner area) at both sampling sites (Roque Tortuga and Rincón de Los Castellanos).

    Figure  6.  SIMPER results carried out with their respective species. Comparative species contribution in the patch sites. The eight most important species explaining the dissimilarity between both patch sites are shown. cumsum represents cumulative dissimilarity.

    Table  1.   Biodiversity indices of the epifaunal community considering their respective patch sites in Roque Tortuga

    Roque Tortuga indexEdgeNear edgeInner area
    Total individuals2 463.002 783.004 010.00
    Total species68.0060.0056.00
    Margalef index8.587.446.63
    Simpson dominance0.110.160.39
    Simpson diversity index0.890.840.61
    Pielou uniformity index0.650.700.80
    下载: 导出CSV

    Table  2.   Biodiversity indices of the epifaunal community considering their respective patch sites in Rincon de los Castellanos

    Rincon de los
    Castellanos index
    EdgeNear edgeInner area
    Total individuals2 725.003 506.003 295.00
    Total species45.0046.0042.00
    Margalef index5.565.515.06
    Simpson dominance0.190.440.37
    Simpson diversity index0.810.560.63
    Pielou uniformity index0.580.630.64
    下载: 导出CSV

    Table  3.   PERMANOVAs results on the epifaunal community considering their respective factors

    Factors F p
    Location 19.10 0.000 1
    Fragmentation 10.49 0.000 1
    Fragmentation (L) 4.92 0.000 1
    Note: p<0.001 denotes significant differences.
    下载: 导出CSV
  • Abadie A, Richir J, Lejeune P, et al. 2019. Structural changes of seagrass seascapes driven by natural and anthropogenic factors: A multidisciplinary approach. Frontiers in Ecology and Evolution, 7: 190, doi: 10.3389/fevo.2019.00190
    Anderson M J, Walsh D C I. 2013. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecological Monographs, 83(4): 557–574, doi: 10.1890/12-2010.1
    Bruun H H. 2000. Patterns of species richness in dry grassland patches in an agricultural landscape. Ecography, 23(6): 641–650, doi: 10.1111/j.1600-0587.2000.tb00307.x
    Carroll J M, Furman B T, Tettelbach S T, et al. 2012. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge. Ecology, 93(7): 1637–1647, doi: 10.1890/11-1904.1
    Chu L Q, Hou M Y, Jiang Z D. 2022. How does the fragmentation of pasture affect grassland ecology? Evidence from typical pastoral areas in China. Ecological Indicators, 136: 108701, doi: 10.1016/j.ecolind.2022.108701
    Clarke K R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1): 117–143, doi: 10.1111/j.1442-9993.1993.tb00438.x
    Cousins S A O, Lavorel S, Davies I. 2003. Modelling the effects of landscape pattern and grazing regimes on the persistence of plant species with high conservation value in grasslands in south-eastern Sweden. Landscape Ecology, 18(3): 315–332, doi: 10.1023/A:1024400913488
    Day J H. 1968. A Monograph on the Polychaeta of Southern Africa Part 1, Errantia: Part 2, Sedentaria Published by the Trustees of the British Museum (Natural History), London, 1967 Publication no. 656. Pp. viii + 878. Price £15. Journal of the Marine Biological Association of the United Kingdom, 48(3): 836, doi: 10.1017/S0025315400019299
    Deza A A, Anderson T W. 2010. Habitat fragmentation, patch size, and the recruitment and abundance of kelp forest fishes. Marine Ecology Progress Series, 416: 229–240, doi: 10.3354/meps08784
    Du X F, Liu H W, Li Y B, et al. 2022. Soil community richness and composition jointly influence the multifunctionality of soil along the forest-steppe ecotone. Ecological Indicators, 139: 108900, doi: 10.1016/j.ecolind.2022.108900
    Duffy J E, Lefcheck J S, Stuart-Smith R D, et al. 2016. Biodiversity enhances reef fish biomass and resistance to climate change. Proceedings of the National Academy of Sciences of the United States of America, 113(22): 6230–6235, doi: 10.1073/pnas.1524465113
    Ettinger C L, Voerman S E, Lang J M, et al. 2017. Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge. PeerJ, 5: e3246, doi: 10.7717/peerj.3246
    Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34: 487–515, doi: 10.1146/annurev.ecolsys.34.011802.132419
    Fitz J, Adenle A A, Ifejika Speranza C. 2022. Increasing signs of forest fragmentation in the Cross River National Park in Nigeria: Underlying drivers and need for sustainable responses. Ecological Indicators, 139: 108943, doi: 10.1016/j.ecolind.2022.108943
    Gagnon K, Gustafsson C, Salo T, et al. 2021. Role of food web interactions in promoting resilience to nutrient enrichment in a brackish water eelgrass (Zostera marina) ecosystem. Limnology and Oceanography, 66(7): 2810–2826, doi: 10.1002/lno.11792
    Geppi E F, Riera R. 2022. Responses of intertidal seaweeds to warming: A 38- year time series shows differences of sizes. Estuarine, Coastal and Shelf Science, 270: 107841, doi: 10.1016/j.ecss.2022.107841
    Grez A, Zaviezo T, Tischendorf L, et al. 2004. A transient, positive effect of habitat fragmentation on insect population densities. Oecologia, 141(3): 444–451, doi: 10.1007/s00442-004-1670-8
    Gross C, Donoghue C, Pruitt C, et al. 2018. Habitat use patterns and edge effects across a seagrass-unvegetated ecotone depend on species-specific behaviors and sampling methods. Marine Ecology Progress Series, 598: 21–33, doi: 10.3354/meps12609
    Halpern B S, Frazier M, Afflerbach J, et al. 2019. Recent pace of change in human impact on the world’s ocean. Scientific Reports, 9(1): 11609, doi: 10.1038/s41598-019-47201-9
    Healey D, Hovel K A. 2004. Seagrass bed patchiness: Effects on epifaunal communities in San Diego Bay, USA. Journal of Experimental Marine Biology and Ecology, 313(1): 155–174, doi: 10.1016/j.jembe.2004.08.002
    Hovel K A, Duffy J E, Stachowicz J J, et al. 2021. Joint effects of patch edges and habitat degradation on faunal predation risk in a widespread marine foundation species. Ecology, 102(5): e03316, doi: 10.1002/ecy.3316
    Hovel K A, Lipcius R N. 2001. Habitat fragmentation in a seagrass landscape: Patch size and complexity control blue crab survival. Ecology, 82(7): 1814–1829, doi: 10.1890/0012-9658(2001)082[1814:HFIASL]2.0.CO;2
    Johnson M W, Heck K L J. 2006. Effects of habitat fragmentation per se on decapods and fishes inhabiting seagrass meadows in the northern Gulf of Mexico. Marine Ecology Progress Series, 306: 233–246, doi: 10.3354/meps306233
    Kelaher B P, Castilla J C. 2005. Habitat characteristics influence macrofaunal communities in coralline turf more than mesoscale coastal upwelling on the coast of Northern Chile. Estuarine, Coastal and Shelf Science, 63(1–2): 155–165, doi: 10.1016/j.ecss.2004.10.017
    Laurel B J, Gregory R S, Brown J A. 2003. Predator distribution and habitat patch area determine predation rates on Age-0 juvenile cod Gadus spp. Marine Ecology Progress Series, 251: 245–254, doi: 10.3354/meps251245
    Lincoln R J. 1979. British marine amphipoda: Gammaridea. London: British Museum Natural History
    Mills V S, Berkenbusch K. 2009. Seagrass (Zostera muelleri) patch size and spatial location influence infaunal macroinvertebrate assemblages. Estuarine, Coastal and Shelf Science, 81(1): 123–129, doi: 10.1016/j.ecss.2008.10.005
    Moore E C, Hovel K A. 2010. Relative influence of habitat complexity and proximity to patch edges on seagrass epifaunal communities. Oikos, 119(8): 1299–1311, doi: 10.1111/j.1600-0706.2009.17909.x
    Morais J, Medeiros A P M, Santos B A. 2018. Research gaps of coral ecology in a changing world. Marine Environmental Research, 140: 243–250, doi: 10.1016/j.marenvres.2018.06.021
    Oksanen J, Blanchet F G, Kindt R, et al. 2013. Package ‘vegan’. Community Ecology Package, 2(9): 1–295
    Pierri-Daunt A B, Tanaka M O. 2014. Assessing habitat fragmentation on marine epifaunal macroinvertebrate communities: An experimental approach. Landscape Ecology, 29(1): 17–28, doi: 10.1007/s10980-013-9970-1
    Reed B J, Hovel K A. 2006. Seagrass habitat disturbance: Source. Marine Ecology Progress Series, 326: 133–143, doi: 10.2307/24870697
    Rielly-Carroll E, Freestone A L. 2017. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system. Oecologia, 183(3): 899–908, doi: 10.1007/s00442-016-3791-2
    Singh S P, Singh P. 2015. Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50: 431–444, doi: 10.1016/j.rser.2015.05.024
    Vega Fernández T, Milazzo M, Badalamenti F, et al. 2005. Comparison of the fish assemblages associated with Posidonia oceanica after the partial loss and consequent fragmentation of the meadow. Estuarine, Coastal and Shelf Science, 65(4): 645–653, doi: 10.1016/j.ecss.2005.07.010
    Vitousek P M, Mooney H A, Lubchenco J, et al. 2008. Human domination of Earth’s ecosystems. In: Marzluff J M, Shulenberger E, Endlicher W, et al. , eds. Urban Ecology: An International Perspective on the Interaction Between Humans and Nature. New York: Springer, 3–13, doi: 10.1007/978-0-387-73412-5_1
    Warry F Y, Hindell J S, Macreadie P I, et al. 2009. Integrating edge effects into studies of habitat fragmentation: A test using meiofauna in seagrass. Oecologia, 159(4): 883–892, doi: 10.1007/s00442-008-1258-9
    Waycott M, Duarte C M, Carruthers T J B, et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30): 12377–12381, doi: 10.1073/pnas.0905620106
    Wickham H, Chang W, Wickham M H. 2016. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1): 1–189
    Zambrano L, Aronson M F J, Fernandez T. 2019. The consequences of landscape fragmentation on socio-ecological patterns in a rapidly developing urban area: A case study of the national autonomous University of Mexico. Frontiers in Environmental Science, 7: 152, doi: 10.3389/fenvs.2019.00152
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-31
  • 录用日期:  2024-03-27
  • 网络出版日期:  2025-03-19

目录

    /

    返回文章
    返回