Effects of nutrient limitations on the sinking velocity of Thalassiosira weissflogii

Jie Zhu Qiang Hao Wei Zhang Yingying Ma Jiangning Zeng

Jie Zhu, Qiang Hao, Wei Zhang, Yingying Ma, Jiangning Zeng. Effects of nutrient limitations on the sinking velocity of Thalassiosira weissflogii[J]. Acta Oceanologica Sinica, 2024, 43(6): 163-172. doi: 10.1007/s13131-024-2309-8
Citation: Jie Zhu, Qiang Hao, Wei Zhang, Yingying Ma, Jiangning Zeng. Effects of nutrient limitations on the sinking velocity of Thalassiosira weissflogii[J]. Acta Oceanologica Sinica, 2024, 43(6): 163-172. doi: 10.1007/s13131-024-2309-8

doi: 10.1007/s13131-024-2309-8

Effects of nutrient limitations on the sinking velocity of Thalassiosira weissflogii

Funds: The Key R&D Program of Zhejiang under contract No. 2023C03120; the Science Foundation of Donghai Laboratory under contract No. DH-2022KF0215; the National Key Research and Development Program of China under contract No. 2021YFC3101702; the National Programme on Global Change and Air-Sea Interaction (Phase Ⅱ)—Hypoxia and Acidification Monitoring Warning Project in the Changjiang Estuary, and Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) Project under contract No. SZ2001.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Cell abundance and growth rate data for the phosphate depletion-spike experiment (a) and nitrate depletion-spike experiment (b). PR, PL, PD, and PS represent phosphate repletion, phosphate limitation, phosphate depletion, and phosphate spike, respectively. NR, NL, ND, and NS represent nitrate repletion, nitrate limitation, nitrate depletion, and nitrate spike, respectively. R represents the post-recovery time, and five-time points 2 h, 6 h, 12 h, 24 h, and 48 h were recorded after the addition of limiting nutrients. These abbreviations apply to all figures.

    Figure  2.  Chlorophyll a concentrations and the changes in the optimal photochemical efficiency of photosystem Ⅱ (Fv/Fm) throughout the phosphate depletion-spike experiment (a) and nitrate depletion-spike experiment (b).

    Figure  3.  Limited nutrient concentrations and sinking velocity data for the phosphate depletion-spike experiment (a) and nitrate depletion-spike experiment (b).

    Figure  4.  Intracellular contents (protein, glucose-based carbohydrate, and lipid) data for the phosphate depletion-spike experiment (a) and nitrate depletion-spike experiment (b). The pie chart shows the proportion of each component in four different stages.

    Figure  5.  TEP concentrations in the nitrate depletion-spike experiment (orange pillars) and phosphate depletion-spike experiment (green pillars).

    Figure  6.  BSi concentrations in the nitrate depletion-spike experiment (purple pillars) and phosphate depletion-spike experiment (yellow pillars).

    Figure  7.  Single-cell surface area in the four nutrient phases.

    Figure  8.  Correlation between SV and physiological-biochemical parameters for the phosphate depletion-spike experiment (a) and nitrate depletion-spike experiment (b). *: P < 0.05; **: P < 0.01; ***: P < 0.001.

    Figure  9.  Conceptual model to simulate the effect of nutrient limitation on the sinking velocity of Thalassiosira weissflogii in the Changjiang River Estuary. Owing to the input of diluted water from the Changjiang River, there is an excess of nitrogen and phosphorus nutrient salts. The nearshore waters of the Changjiang River Estuary are in the stage of nutrient repletion without nutrient limitation; however, with the increase in the spreading distance of the freshwater from the Changjiang River, nutrient concentration gradually decreases, and the phenomena of phosphate limitation and nitrate limitation occur successively. Small yellow circles represent nitrate concentrations, red circles represent phosphate concentrations, green triangles represent lipid content and blue shades represent extracellular products.

    Table  1.   Changes in Fv/Fm, surface area of a single cell, sinking velocity (SV), and the macromolecular composition, transparent extracellular polymeric particle (TEP) concentrations in Thalassiosira weissflogii for the nitrate depletion-spike and phosphate depletion-spike experiments

    Nutrient
    stage
    SV/
    (m·d−1)
    Growth
    rate/d−1
    Fv/Fm Surface area/
    μm2
    Protein/
    (mg·mg−1)
    Glucose-based carbohydrate/
    (μg·mg−1)
    Lipid/
    (mg·mg−1)
    TEP/
    (μg·L−1) (Xeq)
    NR 0.21 ± 0.05 0.55 ± 0.03 0.69 ± 0.01 61.45 ± 14.46 0.34 ± 0.06 2.03 ± 0.52 0.12 ± 0.04 229.38 ± 53.11
    NL 1.09 ± 0.13 0.10 ± 0.02 0.59 ± 0.03 73.43 ± 21.17 0.15 ± 0.03 3.58 ± 0.31 0.53 ± 0.07 261.96 ± 87.91
    ND 0.35 ± 0.04 0.02 ± 0.05 0.34 ± 0.03 68.17 ± 23.01 0.37 ± 0.10 5.15 ± 0.61 0.28 ± 0.07 336.00 ± 46.30
    NS 0.49 ± 0.07 0.04 ± 0.05 0.39 ± 0.02 83.01 ± 20.37 0.20 ± 0.05 6.07 ± 1.33 0.37 ± 0.05 316.50 ± 63.68
    PR 0.17 ± 0.08 0.48 ± 0.06 0.69 ± 0.01 81.34 ± 19.04 0.32 ± 0.06 2.41 ± 0.65 0.10 ± 0.02 184.44 ± 62.55
    PL 0.45 ± 0.06 0.12 ± 0.04 0.63 ± 0.01 77.77 ± 21.65 0.19 ± 0.05 2.52 ± 0.50 0.31 ± 0.03 344.78 ± 75.24
    PD 0.35 ± 0.07 0.06 ± 0.08 0.42 ± 0.02 74.34 ± 24.13 0.38 ± 0.07 4.44 ± 1.25 0.33 ± 0.05 349.88 ± 48.56
    PS 0.41 ± 0.07 0.10 ± 0.07 0.40 ± 0.02 95.59 ± 21.54 0.43 ± 0.09 5.55 ± 0.67 0.31 ± 0.03 313.59 ± 110.49
    下载: 导出CSV
  • Alipanah L, Winge P, Rohloff J, et al. 2018. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE, 13(2): e0193335, doi: 10.1371/journal.pone.0193335
    Alldredge A L, Gotschalk C. 1988. In situ settling behavior of marine snow. Limnology and Oceanography, 33(3): 339–351, doi: 10.4319/lo.1988.33.3.0339
    Alldredge A L, Passow U, Logan B E. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 40(6): 1131–1140, doi: 10.1016/0967-0637(93)90129-Q
    Anderson L W J, Sweeney B M. 1977. Diel changes in sedimentation characteristics of Ditylum brightwelli: Changes in cellular lipid and effects of respiratory inhibitors and ion-transport modifiers. Limnology and Oceanography, 22(3): 539–552, doi: 10.4319/lo.1977.22.3.0539
    Anderson L W J, Sweeney B M. 1978. Role of inorganic ions in controlling sedimentation rate of a marine centric diatom ditylum brightwelli. Journal of Phycology, 14(2): 204–214, doi: 10.1111/j.1529-8817.1978.tb02450.x
    Bach L T, Boxhammer T, Larsen A, et al. 2016. Influence of plankton community structure on the sinking velocity of marine aggregates. Global Biogeochemical Cycles, 30(8): 1145–1165, doi: 10.1002/2016GB005372
    Bar-Zeev E, Berman T, Rahav E, et al. 2011. Transparent exopolymer particle (TEP) dynamics in the eastern Mediterranean Sea. Marine Ecology Progress Series, 431: 107–118, doi: 10.3354/meps09110
    Beardall J, Young E, Roberts S. 2001. Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences, 63(1): 44–69, doi: 10.1007/PL00001344
    Bienfang P K, Harrison P J, Quarmby L M. 1982. Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Marine Biology, 67(3): 295–302, doi: 10.1007/BF00397670
    Bienfang P K, Szyper J P. 1982. Effects of temperature and salinity on sinking rates of the centric diatom Ditylum brightwelli. Biological Oceanography, 1(3): 211–223
    Botte P, d’Ippolito G, Gallo C, et al. 2018. Combined exploitation of CO2 and nutrient replenishment for increasing biomass and lipid productivity of the marine diatoms Thalassiosira weissflogii and Cyclotella cryptica. Journal of Applied Phycology, 30(1): 243–251, doi: 10.1007/s10811-017-1221-4
    Boyd C, Gradmann D. 2002. Impact of osmolytes on buoyancy of marine phytoplankton. Marine Biology, 141(4): 605–618, doi: 10.1007/s00227-002-0872-z
    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254, doi: