Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas

Jing Ma Wanyin Wang Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang

Jing Ma, Wanyin Wang, Hermann Zeyen, Yimi Zhang, Zhongsheng Li, Tao He, Dingding Wang. Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2342-7
Citation: Jing Ma, Wanyin Wang, Hermann Zeyen, Yimi Zhang, Zhongsheng Li, Tao He, Dingding Wang. Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2342-7

doi: 10.1007/s13131-024-2342-7

Influence of lithospheric thickness distribution on oil and gas basins, China seas and adjacent areas

Funds: This research is supported by The National Key Research and Development Plan project “Research on Comprehensive Processing and Interpretation Methods of Aeronautical Geophysical Data and Soft ware Development” (No. 2017YFC0602202).
More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • Figure  1.  Distribution of oil and gas basins in the China seas and adjacent areas (modified from Chen et al., 2019)

    ① Hailar Basin, ② Erlian, ③ Ordos Basin, ④ Sichuan Basin, ⑤ Chuxiong Basin, ⑥ Lanping-Simao Basin, ⑦ Songliao Basin, ⑧ Bohai Bay Basin, ⑨ South North China, ⑩ Nanxiang, ⑪ Jianghan Basin, ⑫ Sanjiang Basin, ⑬ North Yellow Sea, ⑭ Subei Basin, ⑮ South Yellow Sea, ⑯ Beibu Gulf, ⑰ East China Sea Shelf Basin, ⑱ Okinawa Trough Basin, ⑲ Taixi, ⑳ Taixinan, ㉑ Zhujiang River estuary, ㉒ Qiongdongnan Basin, ㉓ Yinggehai Basin, ㉔ Zhong Jiannan, ㉕ Wan’an, ㉖ Nanweixi, ㉗ Yongshu Basin, ㉘ Nanweidong, ㉙ Jiuzhang Basin, ㉚ Beikang Basin, ㉛ Andubei Basin, ㉜ Liyue, ㉝ North Palawan, ㉞ South Palawan, ㉟ Nansha Trough Basin, ㊱ Brunei-Sabah Basin, ㊲ Zengmu Basin,

    Figure  2.  Topographic elevation map of the China seas and adjacent areas.

    Figure  3.  Satellite gravity anomaly map of the China seas and adjacent areas.

    Figure  4.  Geoid map of the China seas and adjacent areas.

    Figure  5.  Sediment thickness map of the China seas and adjacent areas.

    Figure  6.  Moho depth map of the China seas and adjacent areas.

    Figure  7.  Schematic diagram of lithospheric local isostasy theory (modified from Fullea et al., 2007).

    Figure  8.  Lithospheric thickness map of the China seas and adjacent areas.

    Figure  10.  Lithospheric thickness map of oil and gas basins in the China seas and adjacent areas.

    Figure  9.  Relationships between the LAB depth and the Moho and topography depth.

    Figure  11.  Statistical chart of the minimum lithospheric thickness in the China seas and adjacent oil and gas basins a. Statistics according to the type of oil and gas basin; b. statistics according to the minimum thickness of the lithosphere in the oil and gas basin.

    Figure  12.  Statistical chart of relative lithospheric thickness fluctuation in the China seas and adjacent oil and gas basins a. Statistics according to the type of oil and gas basin; b. statistics according to the relative fluctuation in lithospheric thickness in oil and gas basins.

    Figure  13.  Plots of lithospheric thickness in the China seas and adjacent oil and gas basins a. Minimum lithospheric thickness and oil abundance; b. relative lithospheric thickness fluctuation and oil abundance; c. sedimentary layer thickness and oil abundance; d. heat flow value and oil abundance; e. lithospheric minimum value and heat flow value; f. relative lithospheric thickness fluctuation and heat flow value; g. sedimentary layer thickness and heat flow value; h. lithospheric thickness minimum value and relative lithospheric thickness fluctuation difference..

    Figure  14.  Lithosphere action and basin classification models (Wang et al., 1998).

    Table  1.   Calculation parameters

    Parameters Property of matter Parameter value
    $ {\rho _a} $ Asthenosphere density (g/cm3) 3.2
    $ {\rho _{\text{w}}} $ Sea water density (g/cm3) 1.03
    $ {H_{\text{0}}} $ Elevation calibration constant (m) 140
    $ \alpha $ Coefficient of mantle thermal expansion
    (10-5 K-1)
    3.5
    $ {T_{\text{s}}} $ Surface temperature (℃) 5
    $ {T_{\text{a}}} $ Lithosphere-asthenosphere boundary temperature (℃) 1 330
    $ {A_{\text{s}}} $ Heat yield of surface rocks (10-6 W/m3) 2.5
    $ {a_r} $ The constant factor of exponential distribution of crustal rock heat yield (103) 15
    $ {k_c} $ Crustal heat conductivity (W/(K·m)) 2.5
    $ {k_m} $ Mantle heat conductivity (W/(K·m)) 3.3
    下载: 导出CSV

    Table  2.   Statistical table of geological resources (Zheng et al., 2019; Xie and Gao, 2020) and lithospheric thickness parameters in the China seas and adjacent oil and gas basins

    Basin type Basin name Basin
    area Ls/
    km2
    Oil geological resources/
    108t
    Gas
    geological resources/
    108m3
    Total oil resource equivalent/
    108t
    Oil abundance/
    (105t·km2)
    Minimum lithospheric thickness Lmin/km Relative fluctuation difference ∆L/102km Average sedimentary thickness Lsed/km Average heat flow Q(mW·m−2)
    Superimposed basins Chuxiong 43 200 84 34 0.8 74
    Lanping-
    Simao
    75 850 76 34 0.3 63
    Ordos 237 025 116.5 23 636.3 135.3 57.1 89 29 3.5 66
    Sichuan 198 550 124 655.8 99.3 50.0 91 29 6.4 55
    Continental rift basin Songliao 264 975 111.4 26 734.9 132.7 50.1 75 23 1.7 64
    Hailar 43 500 10.1 841.8 10.8 24.8 88 9 0.5 57
    Erlian 139 200 13.4 13.4 9.6 88 26 0.2 71
    Sanjiang 39 425 86 17 0.2 48
    South North China 144 175 82 16 1.3 60
    Bohai Bay 20 2000 325.3 236 074.1 513.4 254.1 72 23 2.3 61
    Beibu Gulf 51 950 21.2 21.2 40.8 74 22 2.1 62
    Nanxiang 18 950 5.2 400.0 5.5 28.9 82 14 1.4 50
    South Yellow Sea 49 000 7.3 1847.0 8.8 18.0 80 11 0.7 76
    Jianghan 37 125 5.2 5.2 13.9 83 15 2.5 50
    North Yellow Sea 44 300 4.2 4.2 9.6 76 20 1.0 51
    Subei 157 675 6.2 600.0 6.7 4.2 78 17 2.5 67
    Continental margin rift basin Qiongdongnan 89 025 14.9 51 607.0 56.0 62.9 55 43 4.2 80
    Zhujiang River estuary 249 300 74.3 29 958.0 98.2 39.4 47 43 2.4 66
    East China Sea Shelf 247 600 2.7 60 479.0 50.9 20.6 60 33 3.1 78
    Tai Xinan 47 650 1.2 805.0 1.9 3.9 50 45 3.6 69
    Tai Xi 64 800 0.6 1248.0 1.6 2.5 72 28 2.1 65
    Strike-slip and extensional basin Wan’an 66 225 23.1 27 463.0 45.0 68.0 63 31 5.2 67
    Zhongjiannan 127 175 33.7 51 980.0 75.1 59.1 43 47 1.9 94
    Yinggehai 117 950 44 209.0 35.2 29.9 70 31 5.7 81
    Detached continental block basin Beikang 56 350 8.9 14 855.0 20.7 36.7 64 30 4.2 64
    Liyue 70 300 6.1 16 644.0 19.4 27.6 54 33 2.5 42
    Nanwei Dong 5 875 0.9 897.0 1.6 27.1 65 15 2.7 66
    Nanwei Xi 80 225 8.8 13 382.0 19.4 24.2 48 41 3.0 68
    Yongshu 2 275 0.3 294.0 0.5 22.9 54 14 2.3 98
    North Palawan 17 275 1.4 2 178.0 3.1 18.0 53 26 2.3 67
    South Palawan 13 150 0.9 1 471.0 2.1 15.9 67 15 3.8 40
    Nansha Trough 46 275 3.2 3 271.0 5.8 12.6 53 41 3.1 53
    Andubei 11 950 0.7 708.0 1.3 10.5 59 20 2.0 59
    Jiuzhang 14 525 0.8 825.0 1.5 10.1 56 23 2.0 35
    Backarc basin Okinawa trough 137 925 2.2 5 368.0 6.5 4.7 54 41.2 2.2 98
    Forearc basin Brunei-
    Sabah
    63 725 31.7 15 274.0 43.9 68.8 65 33.4 7.5 49
    Foreland Basin Zengmu 161 250 29.6 165 966.0 161.8 100.3 64 32.9 6.0 70
    Note: “−” indicates no data.
    下载: 导出CSV
  • Afonso J C, Ben-Mansour W, O'Reilly S Y, et al. 2022. Thermochemical structure and evolution of cratonic lithosphere in Central and Southern Africa. Nature Geoscience, 15(5): 405–410, doi: 10.1038/s41561-022-00929-y
    Chen Jianwen, Liang Jie, Zhang Yinguo, et al. 2019. Regional evaluation of oil and gas resources in offshore China and exploration of marine Paleo-Mesozoic oil and gas in the Yellow Sea and East China Sea. Marine Geology & Quaternary Geology (in Chinese), 39(6): 1–29
    Dai Jinxing, Ni Yunyan, Liu Quanyou, et al. 2021. Sichuan super gas basin in southwest China. Petroleum Exploration and Development (in Chinese), 48(6): 1081–1088
    Fullea J, Fernàndez M, Zeyen H, et al. 2007. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics, 430(1–4): 97–117, doi: 10.1016/j.tecto.2006.11.003
    He Dengfa, Jia Chengzao, Tong Xiaoguang, et al. 2004. Advances in studies of petroliferous structures and tectonics. Petroleum Exploration and Development (in Chinese), 31(5): 1–7
    Jin Zhijun, Yin Jinyin, Xie Fangke, et al. 2003. Lithosphere structures, petroleum accumulation and distribution in petroliferous basin. Chinese Journal of Geology (in Chinese), 38(3): 392–402
    Ju Yiwen, Sun Ying, Wang Guochang, et al. 2015. Dynamic types of basin formation and evolution and its geodynamic mechanisms. Chinese Journal of Geology (in Chinese), 50(2): 503–523
    Kang Yuzhu, Xing Shuwen, Li Huijun, et al. 2019. Features of structural systems in northern China and its control on basin and hydrocarbon distribution. Journal of Geomechanics (in Chinese), 25(6): 1013–1024
    Lachenbruch A H, Morgan P. 1990. Continental extension, magmatism and elevation; Formal relations and rules of thumb. Tectonophysics, 174(1–2): 39–62, doi: 10.1016/0040-1951(90)90383-J
    Laske G, Masters G, Ma Z, et al. 2012. CRUST1.0: An updated global model of Earth’s crust. In: EGU General Assembly 2012. Vienna: EGU, 3743
    Li Desheng. 1982. Tectonic types of oil and gas basins in China. Acta Petrolei Sinica (in Chinese), (3): 1–12
    Li Sidian. 2015. Advancement, trend and new challenges in basin geodynamics. Earth Science Frontiers (in Chinese), 22(1): 1–8
    Li Mengkui, Song Xiaodong, Li Jiangtao, et al. 2018a. Lithospheric structures of the main basins in Mainland China and its tectonic implications. Earth Science (in Chinese), 43(10): 3362–3372
    Li Sanzhong, Suo Yanhui, Li Xiyao, et al. 2018b. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone. Chinese Science Bulletin (in Chinese), 63(16): 1550–1593, doi: 10.1360/N972017-01113
    McKenzie D. 1977. Surface deformation, gravity anomalies and convection. Geophysical Journal International, 48(2): 211–238, doi: 10.1111/j.1365-246X.1977.tb01297.x
    Parsons B, Sclater J G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82(5): 803–827, doi: 10.1029/JB082i005p00803
    Pavlis N K, Holmes S A, Kenyon S C, et al. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4): B04406
    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67, doi: 10.1126/science.1258213
    Straume E O, Gaina C, Medvedev S, et al. 2019. GlobSed: updated total sediment thickness in the World’s oceans. Geochemistry, Geophysics, Geosystems, 20(4): 1756–1772
    Tian Zaiyi, Shi Buqing. 2002. Geological features and petroleum reservoir formation in meso-cenozoic sedimentary basins in China. Geotectonica et Metallogenia (in Chinese), 26(1): 1–5
    Wang Dongpo, Liu Li, Xue Linfu, et al. 1998. Geodynamic mechanisms for the formation of sedimentary basins and their classification. Sedimentary Facies and Palaeogeography (in Chinese), 18(3): 7–13
    Xie Yuhong, Gao Yangdong. 2020. Recent domestic exploration progress and direction of CNOOC. China Petroleum Exploration (in Chinese), 25(1): 20–30
    Xu Changfang. 2003. The study of lithospheric tectonics and basin formation of Chinese Mainland and migration of oil and gas. Earth Science Frontiers (in Chinese), 10(3): 115–127
    Xu Ya, Zeyen H, Hao Tianyao, et al. 2016. Lithospheric structure of the North China Craton: integrated gravity, geoid and topography data. Gondwana Research, 34: 315–323, doi: 10.1016/j.gr.2015.03.010
    Zeyen H, Fernàndez M. 1994. Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis: application to the NE Spanish Geotransect. Journal of Geophysical Research: Solid Earth, 99(B9): 18089–18102, doi: 10.1029/94JB00898
    Zhang Gongcheng, Qu Hongjun, Liu Shixiang, et al. 2015. Tectonic cycle of marginal sea controlled the hydrocarbon accumulation in deep-water areas of South China Sea. Acta Petrolei Sinica (in Chinese), 36(5): 533–545
    Zhang Yimi, Wang Wanyin, Li Linzhi, et al. 2023. Influence of the Moho surface distribution on the oil and gas basins in China seas and adjacent areas. Acta Oceanologica Sinica, 42(3): 167–188, doi: 10.1007/s13131-022-2136-8
    Zhang Gongcheng, Zhu Weilin, Mi Lijun, et al. 2010. The theory of hydrocarbon Genernation controlled by source rock and heat from circle distribution of outside-oil fields and inside-gas fields in South China Sea. Acta Sedimentologica Sinica (in Chinese), 28(5): 987–1005
    Zheng Min, Li Jianzhong, Wu Xiaozhi, et al. 2019. Potential of oil and natural gas resources of main hydrocarbon-bearing basins and key exploration fields in China. Earth Science (in Chinese), 44(3): 833–847
    Zhu Rixiang, Zhang Shuichang, Wan Bo, et al. 2023. Effects of Neo-Tethyan evolution on the petroleum system of Persian Gulf superbasin. Petroleum Exploration and Development, 50(1): 1–13, doi: 10.1016/S1876-3804(22)60365-3
    Zhu Weilin, Wu Jingfu, Zhang Gongcheng, et al. 2015. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins. Earth Science Frontiers (in Chinese), 22(01): 88–101.
  • 加载中
计量
  • 文章访问数:  72
  • HTML全文浏览量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 录用日期:  2024-02-05
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回