Assessing the degree of impact from iceberg activities on penguin colonies of Clarence Island

Hong Lin Xiao Cheng Teng Li Qian Shi Qi Liang Xinyu Meng Shaoyin Wang Lei Zheng

Hong Lin, Xiao Cheng, Teng Li, Qian Shi, Qi Liang, Xinyu Meng, Shaoyin Wang, Lei Zheng. Assessing the degree of impact from iceberg activities on penguin colonies of Clarence Island[J]. Acta Oceanologica Sinica, 2024, 43(9): 105-109. doi: 10.1007/s13131-024-2355-2
Citation: Hong Lin, Xiao Cheng, Teng Li, Qian Shi, Qi Liang, Xinyu Meng, Shaoyin Wang, Lei Zheng. Assessing the degree of impact from iceberg activities on penguin colonies of Clarence Island[J]. Acta Oceanologica Sinica, 2024, 43(9): 105-109. doi: 10.1007/s13131-024-2355-2

doi: 10.1007/s13131-024-2355-2

Assessing the degree of impact from iceberg activities on penguin colonies of Clarence Island

Funds: The National Natural Science Foundation of China under contract Nos 41925027 and 42206249.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Clarence Island and penguin colonies. Orange dots and green triangles represent penguin colonies and krill bases, respectively. Black closed lines indicate contour lines, and the brown regions depict the exposed rock areas on the island. The base map shows the bathymetric features. An inset on the right demonstrates the location of Clarence Island.

    Figure  2.  Heatmap of the iceberg impact on penguin colonies. The iceberg impact is categorized into three levels: low, medium, and high, corresponding to the blue, gray, and red blocks in the heatmap, respectively. The degree of iceberg impact on penguin colonies is determined by both the iceberg passage frequency (vertical axis) and the iceberg grounding probability (horizontal axis).

    Figure  3.  Iceberg grazing events, trajectories, and assessment of impact on penguin colonies. a. Iceberg D29B grazes the island on August 3, 2023. b. Iceberg D28 nears the island on August 15, 2023. c. Iceberg D30A grazes the island on September 8, 2023. d. Schematic of a flat iceberg nearing the island. e. Trajectories of the three icebergs from July to September 2023 and average wind speeds for the period. Inset on the left features a Sentinel-2 image from September 8, 2023, showing abundant sea ice fragments. f. Trajectories and origins of icebergs from 1978 to 2023. Iceberg nomenclature is based on the Antarctic quadrant where they were first identified, with sectors delineated counterclockwise as: Area A (0°–90°W), dark green lines; Area B (90°W–180°), light green lines; Area C (180°–90°E), pink lines; Area D (90°E–0°), deep red lines. Light yellow lines indicate icebergs of unknown origin. g. Iceberg impact levels on eleven penguin colonies: red for high impact, yellow for medium impact, and green for low impact. The background displays bathymetric features.

  • Arrigo K R, van Dijken G L, Ainley D G, et al. 2002. Ecological impact of a large Antarctic iceberg. Geophysical Research Letters, 29(7): 8, doi: 10.1029/2001GL014160
    Budge J S, Long D G. 2018. A comprehensive database for Antarctic iceberg tracking using scatterometer data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2): 434–442, doi: 10.1109/JSTARS.2017.2784186
    Dugger K M, Ainley D G, Lyver P O B, et al. 2010. Survival differences and the effect of environmental instability on breeding dispersal in an Adélie penguin meta-population. Proceedings of the National Academy of Sciences of the United States of America, 107(27): 12375–12380, doi: 10.1073/pnas.1000623107
    Duprat L P A M, Bigg G R, Wilton D J. 2016. Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nature Geoscience, 9(3): 219–221, doi: 10.1038/NGEO2633
    Fretwell P T, Boutet A, Ratcliffe N. 2023. Record low 2022 Antarctic sea ice led to catastrophic breeding failure of emperor penguins. Communications Earth & Environment, 4(1): 273, doi: 10.1038/s43247-023-00927-x
    Humphries G R W, Naveen R, Schwaller M, et al. 2017. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Record, 53(2): 160–166, doi: 10.1017/S0032247417000055
    Jenouvrier S, Holland M, Stroeve J, et al. 2014. Projected continent-wide declines of the emperor penguin under climate change. Nature Climate Change, 4(8): 715–718, doi: 10.1038/nclimate2280
    Kooyman G L, Ainley D G, Ballard G, et al. 2007. Effects of giant icebergs on two emperor penguin colonies in the Ross Sea, Antarctica. Antarctic Science, 19(1): 31–38, doi: 10.1017/S0954102007000065
    Larue M, Iles D, Labrousse S, et al. 2024. Advances in remote sensing of emperor penguins: first multi-year time series documenting trends in the global population. Proceedings of the Royal Society B: Biological Sciences, 291(2018): 20232067, doi: 10.1098/rspb.2023.2067
    Li Tian, Liu Yan, Cheng Xiao, et al. 2017. The effect of seafloor topography in the Southern Ocean on tabular iceberg drifting and grounding. Science China Earth Sciences, 60(4): 697–706, doi: 10.1007/s11430-016-9014-5
    Lynch H J, LaRue M A. 2014. First global census of the Adélie Penguin. The Auk, 131(4): 457–466, doi: 10.1642/AUK-14-31.1
    Lynnes A S, Reid K, Croxall J P. 2004. Diet and reproductive success of Adélie and chinstrap penguins: Linking response of predators to prey population dynamics. Polar Biology, 27(9): 544–554, doi: 10.1007/s00300-004-0617-1
    Moore J C, Gladstone R, Zwinger T, et al. 2018. Geoengineer polar glaciers to slow sea-level rise. Nature, 555(7696): 303–305, doi: 10.1038/d41586-018-03036-4
    Qi Mengzhen, Liu Yan, Liu Jiping, et al. 2021. A 15-year Circum-Antarctic iceberg calving dataset derived from continuous satellite observations. Earth System Science Data, 13(9): 4583–4601, doi: 10.5194/essd-13-4583-2021
    Sladen W J L. 1953. The adelie penguin. Nature, 171(4361): 952–955, doi: 10.1038/171952a0
    Trathan P N, Wienecke B, Barbraud C, et al. 2020. The emperor penguin-Vulnerable to projected rates of warming and sea ice loss. Biological Conservation, 241: 108216, doi: 10.1016/j.biocon.2019.108216
    Wilson K J, Turney C S M, Fogwill C J, et al. 2016. The impact of the giant iceberg B09B on population size and breeding success of Adélie penguins in Commonwealth Bay, Antarctica. Antarctic Science, 28(3): 187–193, doi: 10.1017/S0954102015000644
  • 加载中
图(3)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  114
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-08-01
  • 刊出日期:  2024-09-01

目录

    /

    返回文章
    返回