Population structure and genetic diversity of hairfin anchovy (Setipinna tenuifilis) revealed by microsatellite markers

Bingjian Liu Shan Tong Jiasheng Li Xun Jin Sixu Zheng Yunpeng Wang Luxiu Gao Taobo Feng Mingzhe Han Yifan Liu

Bingjian Liu, Shan Tong, Jiasheng Li, Xun Jin, Sixu Zheng, Yunpeng Wang, Luxiu Gao, Taobo Feng, Mingzhe Han, Yifan Liu. Population structure and genetic diversity of hairfin anchovy (Setipinna tenuifilis) revealed by microsatellite markers[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2369-9
Citation: Bingjian Liu, Shan Tong, Jiasheng Li, Xun Jin, Sixu Zheng, Yunpeng Wang, Luxiu Gao, Taobo Feng, Mingzhe Han, Yifan Liu. Population structure and genetic diversity of hairfin anchovy (Setipinna tenuifilis) revealed by microsatellite markers[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2369-9

doi: 10.1007/s13131-024-2369-9

Population structure and genetic diversity of hairfin anchovy (Setipinna tenuifilis) revealed by microsatellite markers

Funds: The Zhejiang Provincial Natural Science Foundation of China under contract Nos LY22D060001 and LY20C190008; the National Natural Science Foundation of China (NSFC) under contract No. 41806156; the Key Research and Development Projects in Xizang under contract No. XZ202301ZY0012N.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Schematic map of sampling locations along the coastal waters of China. A total of 180 individuals of S. tenuifilis from nine geographic locations (DL, QH, QD, LY, NT, ZZ, PX, GS, and ZJ) were collected for population analysis.

    Figure  2.  Plots of results of outlier tests. a. The hierarchical island model test for selection completed using the program Arlequin. The genetic differentiation (FST) is plotted against expected heterozygosity (He). b. The Bayesian test for selection completed using the program BayeScan. The dots on the right side of the vertical line are above a 0.99 probability of being candidates of selection.

    Figure  3.  Population structure obtained from the STRUCTURE analysis (K=2, 3, 4). Individuals are represented by vertical bars. Different colours in the same individual indicate the percentage of the genome shared with each cluster according to the admixture proportions. The Y-axis represents the probability of belonging to a certain cluster, while the X-axis represents each population delimited by a black solid vertical line.

    Figure  4.  Clustering result of the principal component analysis (PAC).

    Figure  5.  Mean sea surface temperature (a) and mean sea surface salinity (b) in the coastal region of China.

    Table  1.   The genetic diversity of 16 polymorphic microsatellite markers for S. tenuifilis

    Locus Na Ho He PIC HWE Fnull
    Sten01 20 0.794 0.869 0.899 NS 0.0664
    Sten02 31 0.750 0.899 0.923 *** 0.1080
    Sten03 21 0.756 0.887 0.918 *** 0.1013
    Sten04 32 0.572 0.914 0.951 *** 0.2498
    Sten05 17 0.867 0.861 0.887 NS 0.0163
    Sten06 18 0.394 0.680 0.677 *** 0.2921
    Sten07 27 0.611 0.770 0.792 *** 0.1190
    Sten08 22 0.544 0.877 0.906 *** 0.2517
    Sten09 45 0.467 0.914 0.956 *** 0.3455
    Sten10 28 0.450 0.889 0.936 *** 0.3531
    Sten11 17 0.700 0.808 0.818 *** 0.0879
    Sten12 21 0.817 0.880 0.904 NS 0.0551
    Sten13 12 0.572 0.668 0.714 *** 0.1288
    Sten14 17 0.606 0.809 0.845 *** 0.1739
    Sten15 29 0.911 0.892 0.925 NS 0.0086
    Sten16 15 0.411 0.418 0.445 NS 0.0645
    Mean 23.25 0.639 0.815 0.844 0.1514
    Notes: Na represents number of alleles, Ho observed heterozygosity, He expected heterozygosity, PIC polymorphic information content, HWE deviation from the Hardy-Weinberg equilibrium (NS meaning non-significant and *** less than 0.0001), and Fnull null allele frequency.
    下载: 导出CSV

    Table  2.   Genetic diversity of nine S. tenuifilis populations

    Population Ra Na Ho He
    QH 12.125 12.125 0.616 0.805
    DL 11.688 11.688 0.578 0.787
    QD 12.188 12.188 0.638 0.798
    LY 11.813 11.813 0.659 0.814
    NT 11.688 11.688 0.625 0.805
    ZZ 11.188 11.188 0.625 0.838
    PX 11.188 11.188 0.663 0.816
    GS 10.938 10.938 0.678 0.822
    ZJ 11.813 11.813 0.669 0.847
    Mean 11.625 11.625 0.639 0.815
    Notes: Ra represents allelic richness, Na number of alleles, Ho observed heterozygosity, and He expected heterozygosity.
    下载: 导出CSV

    Table  3.   Pairwise genetic differentiation (FST) for nine S. tenuifilis populations using microsatellites

    QH DL QD LY NT ZZ PX GS ZJ
    QH
    DL 0.0327
    QD 0.0240 0.0229
    LY 0.0190 0.0265 0.0174
    NT 0.0120 0.0295 0.0147 0.0198
    ZZ 0.0158 0.0345 0.0249 0.0249 0.0182
    PX 0.0370 0.0504 0.0381 0.0312 0.0281 0.0220
    GS 0.0373 0.0515 0.0443 0.0364 0.0329 0.0165 0.0076
    ZJ 0.0368 0.0479 0.0466 0.0366 0.0423 0.0115 0.0227 0.0093
    Notes: Extremely significant difference probability values (p<0.01) following correction for multiple tests are indicated in bold.
    下载: 导出CSV

    Table  4.   Analysis of molecular variance (AMOVA) of S. tenuifilis populations using microsatellites

    Sources of variations df Sum of squares Variance components Percentage of variation Fixation indices
    Total (QH, DL, QD, LY, NT, PX, GS, ZJ)
    Among all populations 7 105.728 0.21106 Va 3.07 FST = 0.03071*
    Within populations 312 2078.400 6.66154 Vb 96.93
    Two groups (QH, DL, QD, LY, NT) (PX, GS, ZJ)
    Among groups 1 34.978 0.15458 Va 2.23 FCT = 0.02226*
    Among populations within group 6 70.750 0.12825 Vb 1.85 FSC = 0.01889*
    Within populations 312 2078.400 6.66154 Vc 95.93 FST = 0.04073*
    下载: 导出CSV

    Table  5.   Bottleneck analysis of S. tenuifilis populations under the two-phase mutation model (TPM) and stepwise mutation model (SMM)

    PopulationWilcoxon testMode-shift test
    TPMSMM
    One tail for
    H deficiency
    One tail for
    H excess
    One tail for
    H deficiency
    One tail for
    H excess
    QH0.216600.798130.105710.90360normal L-shaped
    DL0.019320.983230.004590.99619normal L-shaped
    QD0.009120.992250.007750.99345normal L-shaped
    LY0.371780.647140.231870.78340normal L-shaped
    NT0.201870.812270.148930.86278normal L-shaped
    ZZ0.628220.390980.449970.56987normal L-shaped
    PX0.036960.967300.016770.98550normal L-shaped
    GS0.216600.798130.096410.91232normal L-shaped
    ZJ0.530060.489980.316090.70171normal L-shaped
    下载: 导出CSV
  • Arranz J J, Bayón Y, San Primitivo F. 2001. Genetic variation at microsatellite loci in Spanish sheep. Small Ruminant Research, 39(1): 3–10, doi: 10.1016/s0921-4488(00)00164-4
    Beaumont M A. 2008. Selection and sticklebacks. Molecular Ecology, 17(15): 3425–3427, doi: 10.1111/j.1365-294x.2008.03863.x
    Beaumont M A, Balding D J. 2004. Identifying adaptive genetic divergence among populations from genome scans. Molecular Ecology, 13(4): 969–980, doi: 10.1111/j.1365-294x.2004.02125.x
    Cornuet J M, Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4): 2001–2014, doi: 10.1093/genetics/144.4.2001
    Earl D A, VonHoldt B M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2): 359–361, doi: 10.1007/s12686-011-9548-7
    Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2611–2620., doi: 10.1111/j.1365-294X.2005.02553.x
    Excoffier L, Hofer T, Foll M. 2009. Detecting loci under selection in a hierarchically structured population. Heredity, 103(4): 285–298, doi: 10.1038/hdy.2009.74
    Excoffier L, Lischer H E L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3): 564–567, doi: 10.1111/j.1755-0998.2010.02847.x
    Ferrada-Fuentes S, Galleguillos R, Canales-Aguirre C B, et al. 2018. Development and characterization of thirty-two microsatellite markers for the anchovy, Engraulis ringens Jenyns, 1842 (Clupeiformes, Engraulidae) via 454 pyrosequencing. Latin American Journal of Aquatic Research, 46(2): 452–456, doi: 10.3856/vol46-issue2-fulltext-19
    Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics, 180(2): 977–993, doi: 10.1534/genetics.108.092221
    Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation (version 2.9. 3.2). https://www.scienceopen.com/document?vid=188bd209-47c8-4e90-8a28-4f744b22cf85[2011-06-18/2023-11-01]
    Han Zhiqiang, Guo Xinyu, Liu Qun, et al. 2021. Whole-genome resequencing of Japanese whiting (Sillago japonica) provide insights into local adaptations. Zoological Research, 42(5): 548–561, doi: 10.24272/j.issn.2095-8137.2021.116
    Hedrick P W. 2005. A standardized genetic differentiation measure. Evolution, 59(8): 1633–1638, doi: 10.1554/05-076.1
    Hulce D, Li X, Snyder-Leiby T, et al. 2011. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. Journal of Biomolecular Techniques, 22(S): S35–S36
    Jakobsson M, Rosenberg N A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14): 1801–1806, doi: 10.1093/bioinformatics/btm233
    Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106, doi: 10.1111/j.1365-294X.2007.03089.x
    Larmuseau M H D, Van Houdt J K J, Guelinckx J, et al. 2009. Distributional and demographic consequences of Pleistocene climate fluctuations for a marine demersal fish in the north-eastern Atlantic. Journal of Biogeography, 36(6): 1138–1151, doi: 10.1111/j.1365-2699.2008.02072.x
    Li Jiasheng, Liu Bingjian, Chen Shiyi, et al. 2022. Development and characterization of seventeen novel microsatellite markers in common hairfin anchovy (Setipinna tenuifilis) using third-generation sequencing technology. Journal of Applied Ichthyology, 38(4): 462–467, doi: 10.1111/jai.14335
    Liu Yong, Cheng Jiahua, Li Shengfa. 2004. A study on the distribution of Setipinna taty in the East China Sea. Marine Fisheries (in Chinese), 26(4): 255–260, doi: 10.3969/j.issn.1004-2490.2004.04.002
    Liu Bingjian, Li Jiasheng, Peng Ying, et al. 2024. Chromosome-level genome assembly and population genomic analysis reveal evolution and local adaptation in common hairfin anchovy (Setipinna tenuifilis). Molecular Ecology, 33(10): e17067, doi: 10.1111/mec.17067
    Maggs C A, Castilho R, Foltz D, et al. 2008. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology, 89(sp11): S108–S122, doi: 10.1890/08-0257.1
    Mu Jinglong, Zhang Shanshan, Liang Cui, et al. 2020. Temporal and spatial distribution and mixing behavior of nutrients in the Changjiang River Estuary. Marine Sciences (in Chinese), 44(1): 19–35
    Narum S R, Hess J E. 2011. Comparison of FST outlier tests for SNP loci under selection. Molecular Ecology Resources, 11(s1): 184–194, doi: 10.1111/j.1755-0998.2011.02987.x
    Peakall R O D, Smouse P E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1): 288–295, doi: 10.1111/j.1471-8286.2005.01155.x
    Piry S, Luikart G, Cornuet J M. 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity, 90(4): 502–503, doi: 10.1093/jhered/90.4.502
    Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945–959, doi: 10.1093/genetics/155.2.945
    Rosenberg N A. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes, 4(1): 137–138, doi: 10.1046/j.1471-8286.2003.00566.x
    Rousset F. 2008. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 8(1): 103–106, doi: 10.1111/j.1471-8286.2007.01931.x
    Semenova A V, Stroganov A N, Afanasiev K I, et al. 2015. Population structure and variability of Pacific herring (Clupea pallasii) in the White Sea, Barents and Kara Seas revealed by microsatellite DNA analyses. Polar Biology, 38(7): 951–965, doi: 10.1007/s00300-015-1653-8
    Sheng Yan, Zheng Weihong, Pei Kequan, et al. 2002. Applications of microsatellites in population biology. Acta Plytoecologica Sinica (in Chinese), 26(S1): 119–126
    Song Na, Yin Lina, Sun Dianrong, et al. 2019. Fine-scale population structure of Collichtys lucidus populations inferred from microsatellite markers. Journal of Applied Ichthyology, 35(3): 709–718, doi: 10.1111/jai.13902
    Tamaki K, Honza E. 1991. Global tectionics and formation of marginal basins: role of the western Pacific. Episodes Journal of International Geoscience, 14(3): 224–230, doi: 10.18814/EPIIUGS/1991/V14I3/005
    Vicente A A, Carolino M I, Sousa M C O, et al. 2008. Genetic diversity in native and commercial breeds of pigs in Portugal assessed by microsatellites. Journal of Animal Science, 86(10): 2496–2507, doi: 10.2527/jas.2007-0691
    Wachowiak W, Balk P A, Savolainen O. 2009. Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genetics & Genomes, 5(1): 117–132, doi: 10.1007/s11295-008-0188-3
    Wang Wei, Ma Chunyan, Ouyang Longling, et al. 2021. Genetic diversity and population structure analysis of Lateolabrax maculatus from Chinese coastal waters using polymorphic microsatellite markers. Scientific Reports, 11(1): 15260, doi: 10.1038/s41598-021-93000-6
    Wright S. 2010. Variability Within and Among Natural Populations. Illinois: University of Chicago Press (查阅网上资料, 未找到出版地信息, 请确认)
    Xu Shengyong. 2014. Morphology and genetics of Setipinna tenuifilis (in Chinese)[dissertation]. Qingdao: Ocean University of China
    Xu Shengyong, Song Na, Lu Zhichuang, et al. 2014. Genetic variation in scaly hair-fin anchovy Setipinna tenuifilis (Engraulididae) based on the mitochondrial DNA control region. Mitochondrial DNA, 25(3): 223–230, doi: 10.3109/19401736.2013.845754
    Yang Qiaoli, Gao Tianxiang, Liu Jinxian. 2014. Development and characterization of 17 microsatellite loci in an anadromous fish Coilia nasus. Conservation Genetics Resources, 6(2): 357–359, doi: 10.1007/s12686-013-0093-4
    Zhang Bo. 2013. Molecular marker development and genetic diversity analysis of Setipinna tenuifilis (in Chinese) [dissertation]. Zhoushan: Zhejiang Ocean University
    Zhao Shenglong, Xu Hanxiang, Zhong Junsheng, et al. 2016. Zhejiang Marine Fish Records (in Chinese). Hangzhou: Zhejiang Science and Technology Press
    Zuccaro A, Bordonaro S, Criscione A, et al. 2008. Genetic diversity and admixture analysis of Sanfratellano and three other Italian horse breeds assessed by microsatellite markers. Animal, 2(7): 991–998, doi: 10.1017/S1751731108002255
  • 加载中
计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 录用日期:  2024-05-06
  • 网络出版日期:  2025-03-12

目录

    /

    返回文章
    返回