Photosynthetic physiology and stress-resistant biochemical properties reveal the invasive photo-adaptation strategy of marine green alga Codium fragile

Huang Bingxin Li Boxi Wang Xulei Rao Liming Chen Jie Dai Yang Wang Lichun Wang Zhiying Ding Lanping

Huang Bingxin, Li Boxi, Wang Xulei, Rao Liming, Chen Jie, Dai Yang, Wang Lichun, Wang Zhiying, Ding Lanping. Photosynthetic physiology and stress-resistant biochemical properties reveal the invasive photo-adaptation strategy of marine green alga Codium fragile[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2382-z
Citation: Huang Bingxin, Li Boxi, Wang Xulei, Rao Liming, Chen Jie, Dai Yang, Wang Lichun, Wang Zhiying, Ding Lanping. Photosynthetic physiology and stress-resistant biochemical properties reveal the invasive photo-adaptation strategy of marine green alga Codium fragile[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2382-z

doi: 10.1007/s13131-024-2382-z

Photosynthetic physiology and stress-resistant biochemical properties reveal the invasive photo-adaptation strategy of marine green alga Codium fragile

Funds: The National Natural Science Foundation of China under contract Nos 32270219 and 31970216.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The Fv/Fm of two Codium species cultured at different light intensities. a. The Fv/Fm of C. fragile cultured at different light intensities, and b. the Fv/Fm of C. cylindricum cultured at different light intensities. Different letters (a, b, c, and d) represent significant differences among groups.

    Figure  2.  The comparison of the RLCs of two Codium species cultured at different light intensities, a. The comparison of RLCs of C. fragile cultured at different light intensities, and b. the comparison of RLCs of C. cylindricum cultured at different light intensities.

    Figure  3.  The rETRmax, photosynthetic rate in the light-limited region of RLC (α), and Ek of two Codium species cultured at different light intensities. The data were obtained from RLCs. a. The comparison of rETRmax of C. fragile cultured at different light intensities, b. the comparison of rETRmax of C. cylindricum cultured at different light intensities, c. the comparison of α of C. fragile cultured at different light intensities, d. the comparison of α of C. cylindricum cultured at different light intensities, e. the comparison of Ek of C. fragile cultured at different light intensities, and f. the comparison of Ek of C. cylindricum cultured at different light intensities. Different letters (a, b, and c) represent significant differences among groups.

    Figure  4.  The comparison of qP of two Codium species cultured at different light intensities. a. The comparison of qP of C. fragile cultured at different light intensities, and b. the comparison of qP of C. cylindricum cultured at different light intensities.

    Figure  5.  The comparison of NPQ of two Codium species cultured at different light intensities. a. The comparison of NPQ of C. fragile cultured at different light intensities, and b. the comparison of NPQ of C. cylindricum cultured at different light intensities.

    Figure  6.  The pigments contents of two Codium species under different light intensities. a. Contents of chloroplast, and b. contents of carotenoids. Letter a represent no significant differences among groups (p>0.05, ANOVA, followed by Tukey’s multiple comparison test).

    Figure  7.  The MDA contents of two Codium species under different light intensities. Different letters (a and b) represent significant differences among groups (p<0.05, ANOVA, followed by Tukey's multiple comparison test).

    Figure  8.  The comparison of POD activity (a, letters a represent no significant differences among groups (p>0.05, ANOVA, followed by Tukey's multiple comparison test)) and T-AOC (b, different letters (a and b) represent significant differences among groups (p<0.05, ANOVA, followed by Tukey's multiple comparison test)) of two Codium species under different light intensities.

    Table  1.   Operational procedure for the determination of T-AOC

    Measurement tube Control tube
    Reagent 1/mL 1 1
    Sample to be tested/mL a*
    Reagent 2/mL 2 2
    Reagent 3/mL 0.5 0.5
    Mix thoroughly with a vortex mixer, 37℃ water bath for 30 min
    Reagent 4/mL 0.2 0.2
    Sample to be tested/mL a*
    Reagent 5/mL 0.2 0.2
    Note: The reference sampling volume for 10% tissue homogenate is 0.2 mL.
    下载: 导出CSV
  • Benson E E, Rutter J C, Cobb A H. 1983. Seasonal variation in frond morphology and chloroplast physiology of the intertidal alga Codium fragile (Suringar) Hariot. New Phytologist, 95(4): 569–580, doi: 10.1111/j.1469-8137.1983.tb03522.x
    Bird C J, Dadswell M J, Grund D W. 1993. First record of the potential nuisance alga Codium fragile ssp. tomentosoides (Chlorophyta, Caulerpales) in Atlantic Canada. Proceedings of the Nova Scotian Institute of Science, 40(1): 11–17
    Bouman H A, Platt T, Doblin M, et al. 2018. Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set. Earth System Science Data, 10(1): 251–266, doi: 10.5194/essd-10-251-2018
    Carlton J T, Scanlon J A. 1985. Progression and dispersal of an introduced alga: Codium fragile ssp. tomentosoides (Chlorophyta) on the Atlantic coast of North America. Botanica Marina, 28(4): 155–166, doi: 10.1515/botm.1985.28.4.155
    Chapman A S. 1998. From introduced species to invader: what determines variation in the success of Codium fragile ssp. tomentosoides (Chlorophyta) in the North Atlantic Ocean? Helgolä ander Meeresuntersuchungen, 52(3-4): 277–289
    Churchill A C, Moeller H W. 1972. Seasonal patterns of reproduction in New York. Populations of Codium fragile (sur. ) Hariot subsp. tomentosoides (Van Goor) Silva. Journal of Phycology, 8(2): 147–152, doi: 10.1111/j.0022-3646.1972.00147.x
    Ciompi S, Gentili E, Guidi L, et al. 1996. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science, 118(2): 177–184, doi: 10.1016/0168-9452(96)04442-1
    Ding Lanping, Wang Xulei, Huang Bingxin, et al. 2022. The environmental adaptability and reproductive properties of invasive green alga Codium fragile from the Nan'ao Island, South China Sea. Acta Oceanologica Sinica, 41(3): 70–75, doi: 10.1007/s13131-021-1928-6
    Dromgoole F I. 1975. Occurrence of Codium fragile subspecies tomentosoides in New Zealand waters. New Zealand Journal of Marine and Freshwater Research, 9(3): 257–264, doi: 10.1080/00288330.1975.9515564
    Drouin A, McKindsey C W, Johnson L E. 2012. Detecting the impacts of notorious invaders: experiments versus observations in the invasion of eelgrass meadows by the green seaweed Codium fragile. Oecologia, 168(2): 491–502, doi: 10.1007/s00442-011-2086-x
    Du Xiumin, Yin Wenxuan, Zhao Yanxiu, et al. 2001. The production and scavenging of reactive oxygen species in plants. Chinese Journal of Biotechnology (in Chinese), 17(2): 121–125
    Gao Guang, Liu Yameng, Li Xinshu, et al. 2016. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS One, 11(12): e0169040, doi: 10.1371/journal.pone.0169040
    Gao Guang, Xu Zhiguang, Shi Qi, et al. 2018. Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii. Environmental and Experimental Botany, 156: 96–105, doi: 10.1016/j.envexpbot.2018.08.031
    Goss R, Böhme K, Wilhelm C. 1998. The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta, 205(4): 613–621, doi: 10.1007/s004250050364
    Guidi L, Degl’Innocenti E. 2012. Chlorophyll a fluorescence in abiotic stress. In: Venkateswarlu B, Shanker A K, Shanker C, et al. , eds. Crop Stress and Its Management: Perspectives and Strategies. Dordrecht: Springer: 359–398
    Hanisak M D. 1979. Growth patterns of Codium fragile ssp. tomentosoides in response to temperature, irradiance, salinity, and nitrogen source. Marine Biology, 50(4): 319–332, doi: 10.1007/BF00387009
    Hanisak M D, Harlin M M. 1978. Uptake of inorganic nitrogen by Codium fragile subsp. tomentosoides (Chlorophyta). Journal of Phycology, 14(4): 450–454, doi: 10.1111/j.1529-8817.1978.tb02467.x
    Hui Hongxia, Xu Xing, Li Shouming. 2004. Possible mechanism of inhibition on photosynthesis of Lycium barbarum under salt stress. Chinese Journal of Ecology (in Chinese), 23(1): 5–9
    Israel A, Einav R, Silva P C, et al. 2010. First report of the seaweed Codium parvulum (Chlorophyta) in Mediterranean waters: recent blooms on the northern shores of Israel. Phycologia, 49(2): 107–112, doi: 10.2216/PH09-28.1
    Lapointe B E, Barile P J, Littler M M, et al. 2005. Macroalgal blooms on southeast Florida coral reefs: I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae, 4(6): 1092–1105, doi: 10.1016/j.hal.2005.06.004
    Leandro A, Pereira L, Gonçalves A M M. 2020. Diverse applications of marine macroalgae. Marine Drugs, 18(1): 17
    Ma Ting, Li Qiang, Wang Guoxiang, et al. 2006. Influence of suspended sands on rapid light curves of Ceratophyllum demersum in turbid solution. Journal of Wuhan Botanical Research (in Chinese), 24(6): 531–535
    Magnusson M, Mata L, Wang Na, et al. 2015. Manipulating antioxidant content in macroalgae in intensive land-based cultivation systems for functional food applications. Algal Research, 8: 153–160, doi: 10.1016/j.algal.2015.02.007
    Malinowski K C, Ramus J. 1973. Growth of the green alga Codium fragile in a Connecticut estuary. Journal of Phycology, 9(1): 102–110, doi: 10.1111/j.0022-3646.1973.00102.x
    Maoka T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1): 1–16, doi: 10.1007/s11418-019-01364-x
    Marques R, Cruz S, Calado R, et al. 2021. Effects of photoperiod and light spectra on growth and pigment composition of the green macroalga Codium tomentosum. Journal of Applied Phycology, 33(1): 471–480, doi: 10.1007/s10811-020-02289-9
    Marques R, Moreira A, Cruz S, et al. 2022. Controlling light to optimize growth and added value of the green macroalga Codium tomentosum. Frontiers in Marine Science, 9: 906332, doi: 10.3389/fmars.2022.906332
    Matsubara K, Matsuura Y, Bacic A, et al. 2001. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules, 28(5): 395–399, doi: 10.1016/S0141-8130(01)00137-4
    Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345): 659–668, doi: 10.1093/jexbot/51.345.659
    Neill P E, Alcalde O, Faugeron S, et al. 2006. Invasion of Codium fragile ssp. tomentosoides in northern Chile: a new threat for Gracilaria farming. Aquaculture, 259(1-4): 202–210, doi: 10.1016/j.aquaculture.2006.05.009
    Parsons T R, Strickland J. 1963. Discussion of spectrophotometric determination of marine-plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Research, 21(3): 155–163
    Pérez-Cirera J L, Cremades J, Bárbara I. 1989. Systematic and synecologic comments about some new seaweed records for Galicia or for the Atlantic coasts of the Iberian Peninsula. Anales del Jardín Botánico de Madrid, 46(1): 35–45
    Platt T, Gallegos C L, Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38(4): 687–701
    Porra R J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73(1): 149–156
    Ruban A V, Young A J, Pascal A A, et al. 1994. The effects of illumination on the xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylakoid membranes. Plant Physiology, 104(1): 227–234, doi: 10.1104/pp.104.1.227
    Schreiber U. 2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou G C, Govindjee, eds. Chlorophyll A Fluorescence: A Signature of Photosynthesis. Dordrecht: Springer: 279–319
    Silva P C. 1955. The dichotomous species of Codium in Britain. Journal of the Marine Biological Association of the United Kingdom, 34(3): 565–577, doi: 10.1017/S0025315400008821
    Trowbridge C D. 1995. Establishment of the green alga Codium fragile ssp. tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. Journal of Ecology, 83(6): 949–965, doi: 10.2307/2261177
    Van Breusegem F, Vranová E, Dat J F, et al. 2001. The role of active oxygen species in plant signal transduction. Plant Science, 161(3): 405–414, doi: 10.1016/S0168-9452(01)00452-6
    Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1): 59–66, doi: 10.1016/S0168-9452(99)00197-1
    Vitousek P M, Mooney H A, Lubchenco J, et al. 1957. Human domination of Earth's ecosystems. Science, 277(5325): 494–499
    Wang Hui-Min David, Chen Ching-Chun, Huynh P, et al. 2015. Exploring the potential of using algae in cosmetics. Bioresource Technology, 184: 355–362, doi: 10.1016/j.biortech.2014.12.001
    Wei Liyuan, Zheng Yi. 2021. Effects of temperature and salinity on growth and nutrient absorption of Codium fragile Hariot. Current Biotechnology (in Chinese), 11(2): 190–195
    Williams S L. 2007. Introduced species in seagrass ecosystems: status and concerns. Journal of Experimental Marine Biology and Ecology, 350(1-2): 89–110, doi: 10.1016/j.jembe.2007.05.032
    Xu Daquan, Zhang Yuzhong, Zhang Rongxian. 1992. Photoinhibition of photosynthesis in plants. Plant Physiology Communications (in Chinese), 28(4): 237–243
    Yan Shanglong, Pan Chuang, Yang Xianqing, et al. 2021. Degradation of Codium cylindricum polysaccharides by H2O2-Vc-ultrasonic and H2O2-Fe2+-ultrasonic treatment: structural characterization and antioxidant activity. International Journal of Biological Macromolecules, 182: 129–135, doi: 10.1016/j.ijbiomac.2021.03.193
    Yang M H, Blunden G, Huang F L, et al. 1997. Growth of a dissociated, filamentous stage of Codium species in laboratory culture. Journal of Applied Phycology, 9(1): 1–3, doi: 10.1023/A:1007996207924
    Yang Xiaoqing, Zhang Suiqi, Liang Zongsuo, et al. 2004. Effects of water stress on chlorophyll fluorescence parameters of different drought resistance winter wheat cultivars seedlings. Acta Botanica Boreali-Occidentalia Sinica (in Chinese), 24(5): 812–816
    Ye Jincong, Ning Yue, Zeng Zhinan, et al. 2010. A study of both temperature and underwater illuminance effect on the growth of green alga, Codium fragile (Suringar) Hariot. Journal of Fujian Fisheries (in Chinese), (4): 25–28
    Yin Shuaiwen, He Xumei, Lang Fengxiang. 2007. Study on bacteriostatic activity of Codium fragile. Journal of Jinggangshan University (Natural Sciences) (in Chinese), 28(8): 45–46
    Zubia M, Robledo D, Freile-Pelegrin Y. 2007. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. Journal of Applied Phycology, 19(5): 449–458, doi: 10.1007/s10811-006-9152-5
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-20
  • 录用日期:  2024-08-26
  • 网络出版日期:  2025-03-18

目录

    /

    返回文章
    返回