The evolution characteristics and causes of melt ponds in the Arctic Ocean

Xu Fang Lujun Zhang

Xu Fang, Lujun Zhang. The evolution characteristics and causes of melt ponds in the Arctic Ocean[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2390-z
Citation: Xu Fang, Lujun Zhang. The evolution characteristics and causes of melt ponds in the Arctic Ocean[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2390-z

doi: 10.1007/s13131-024-2390-z

The evolution characteristics and causes of melt ponds in the Arctic Ocean

Funds: The National Natural Science Foundation of China (Grants 42175172 and 41975134).
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The evolution of melt ponds in the Arctic region from 2002 to 2022. (a) The RMPF and MPA change with SIT, the gray shaded is the standard deviation of RMPF. The dashed line and spatial map show the RMPF evolution in 2007. (b) the variation of RMPF and MPA with latitude.

    Figure  2.  The variation of melt ponds in various Arctic seas from 2002 to 2022.The black and red solid line represents RMPF and total MPA respectively, the gray shaded is the standard deviation of RMPF.

    Figure  3.  Inter-annual variation of melt ponds in the Arctic from 2002 to 2022. (a) the black and red solid line represents RMPF and total MPA respectively. The red dashed line indicates the linear trend, which passes the 95% significance test. The blue bar is SIT. (b) the inter-annual variation of RMPF and MPA with latitude, * indicates passing the 95% significance test.

    Figure  4.  Distribution of summer ponds in the central Arctic from 2002 to 2022. (a) and (b) represent the distribution of RMPF and total MPA, respectively. The small graph on the right shows the trend of pond in the central arctic and marginal seas

    Figure  5.  Average RMPF in the central Arctic under different CMIP6 emission scenarios (a) the SSP1-2.6 scenario, with the black solid line representing the change in RMPF and the black dashed line representing the linear trend that passes the 95% significance test. (b) and (c) are similar to (a) but correspond to the SSP2-4.5 and SSP5-8.5 scenarios, respectively.

    Figure  6.  Distribution of summer RMPF and MPA and their relationship with SIT. (a)(b) represent the average RMPF distribution and their relationship with SIT for June, the marginal bar showing the density distribution of SIT and RMPF in different areas. (c)(d) follow the same format but for MPA. e, f, g, h; i, j, k, l is similar to a, b, c, d but for July and Aug respectively.

    Figure  7.  Spatial distribution of summer pond trends and their relationship with sea ice thickness including the period spanning 2002-2022. (a) The spatial distribution of the RMPF trends. (b) The relationship between RMPF and SIT. The red and blue dots represent central arctic and marginal area, respectively. (c) and (d) are similar to (a) and (b) but for MPA. (e)The 30-year moving-correlation between RMPF and SIT in the central region under different future emission scenarios, with the bold solid line indicating parts that pass the 95% significance test.

    Figure  8.  The connection between summer ponds and energy flux anomalies in the central Arctic from 2002 to 2022 (a) the inter-annual anomalies of RMPF, LH, NLR and NSR. The grey dashed line represents the standard deviation of RMPF. (b) The composite distribution of RMPF, NLR, LH, NSR anomalies.

    Figure  9.  Changes in atmospheric variable anomalies during the positive melt pond event on July 11, 2020. (a)(b) The energy flux anomaly of the lag days. (c) The shade and black line indicates the SLP anomaly and 500hPa geopotential height anomaly, respectively. The vector indicates that the integrated moisture transport. (d−f) The low cloud cover anomaly, the NLR anomaly and RMPF anomaly respectively.

    Table  1.   The models that output melt ponds in CMIP6

    NumModelCountryGroupGrid
    1HadGEM3-GC31-LLUKHadley Center330×360
    2GISS-E2-1-GUSNASA90×144
    3GISS-E2-1-HUSNASA90×144
    4GISS-E2-2-GUSNASA90×144
    5ACCESS-CM2AustralianCSIRO300×360
    6UKESM1-0-LUKNCAS & Hadley Center330×360
    7NorESM2-MMNorwayNCC384×360
    8NorESM2-LMNorwayNCC384×360
    下载: 导出CSV

    Table  2.   Correlation between melt ponds and various influencing factors anomalies in the central Arctic from 2002 to 2022. Bold and * indicate passing the 95% significance test.

    SIT NLR NSR LH SH
    RMPF −0.16 0.81* −0.66* 0.83* 0.55*
    MPA 0.21 0.58* −0.42 0.69* 0.33
    下载: 导出CSV
  • Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under arctic sea ice. Science, 336(6087): 1408, doi: 10.1126/science.1215065
    Brandt R E, Warren S G, Worby A P, et al. 2005. Surface albedo of the Antarctic sea ice zone. Journal of Climate, 18(17): 3606–3622, doi: 10.1175/JCLI3489.1
    Ding Yifan, Cheng Xiao, Liu Jiping, et al. 2020. Retrieval of melt pond fraction over arctic sea ice during 2000-2019 using an ensemble-based deep neural network. Remote Sensing, 12(17): 2746, doi: 10.3390/rs12172746
    Ding Qinghua, Schweiger A, L’Heureux M, et al. 2017. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Climate Change, 7(4): 289–295, doi: 10.1038/nclimate3241
    Eicken H, Grenfell T C, Perovich D K, et al. 2004. Hydraulic controls of summer Arctic pack ice albedo. Journal of Geophysical Research: Oceans, 109(C8): C08007, doi: 10.1029/2003JC001989
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5): 1937–1958, doi: 10.5194/gmd-9-1937-2016
    Fearon M G, Doyle J D, Ryglicki D R, et al. 2021. The role of cyclones in moisture transport into the Arctic. Geophysical Research Letters, 48(4): e2020GL090353, doi: 10.1029/2020GL090353
    Feng Jiajun, Zhang Yuanzhi, Cheng Qiuming, et al. 2022. Pan-Arctic melt pond fraction trend, variability, and contribution to sea ice changes. Global and Planetary Change, 217: 103932, doi: 10.1016/j.gloplacha.2022.103932
    Flocco D, Feltham D L. 2007. A continuum model of melt pond evolution on Arctic sea ice. Journal of Geophysical Research: Oceans, 112(C8): C08016, doi: 10.1029/2006JC003836
    Flocco D, Feltham D L, Bailey E, et al. 2015. The refreezing of melt ponds on Arctic sea ice. Journal of Geophysical Research: Oceans, 120(2): 647–659, doi: 10.1002/2014JC010140
    Flocco D, Schroeder D, Feltham D L, et al. 2012. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. Journal of Geophysical Research: Oceans, 117(C9): C09032, doi: 10.1029/2012JC008195
    Halfar J, Adey W H, Kronz A, et al. 2013. Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proceedings of the National Academy of Sciences of the United States of America, 110(49): 19737–19741
    Henderson G R, Barrett B S, Wachowicz L J, et al. 2021. Local and remote atmospheric circulation drivers of arctic change: a review. Frontiers in Earth Science, 9: 709896, doi: 10.3389/feart.2021.709896
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 1999–2049. https://doi.org/10.1002/qj.3803
    Kapsch M L, Graversen R G, Tjernström M. 2013. Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3(8): 744–748, doi: 10.1038/nclimate1884
    Kinnard C, Zdanowicz C M, Fisher D A, et al. 2011. Reconstructed changes in Arctic sea ice over the past 1, 450 years. Nature, 479(7374): 509–512, doi: 10.1038/nature10581
    Kwok R. 2011. Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. Journal of Geophysical Research: Oceans, 116(C8): C00D05, doi: 10.1029/2011JC007004
    Kwok R, Cunningham G F, Wensnahan M, et al. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008. Journal of Geophysical Research: Ocenas, 114(C7): C07005, doi: 10.1029/2009JC005312
    Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008. Geophysical Research Letters, 36(15): L15501, doi: 10.1029/2009GL039035
    Kato S, Fred G Rose, David A Rutan, et al. 2018. Surface Irradiances of Edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Data Product. Journal Of Climate, 31: 4501–4527, doi: 10.1175/JCLI-D-17-0523.1
    Li Qing, Zhou Chunxia, Zheng Lei, et al. 2020. Monitoring evolution of melt ponds on first-year and multiyear sea ice in the Canadian Arctic Archipelago with optical satellite data. Annals of Glaciology, 61(82): 154–163, doi: 10.1017/aog.2020.24
    Liu Jiping, Song Mirong, Horton R M, et al. 2015. Revisiting the potential of melt pond fraction as a predictor for the seasonal Arctic sea ice extent minimum. Environmental Research Letters, 10(5): 054017, doi: 10.1088/1748-9326/10/5/054017
    Meier W N, Hovelsrud G K, van Oort B E H, et al. 2014. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Reviews of Geophysics, 52(3): 185–217, doi: 10.1002/2013RG000431
    Perovich D K, Tucker III W B. 1997. Arctic sea-ice conditions and the distribution of solar radiation during summer. Annals of Glaciology, 25: 445–450, doi: 10.3189/S0260305500014439
    Polashenski C, Perovich D, Courville Z. 2012. The mechanisms of sea ice melt pond formation and evolution. Journal of Geophysical Research: Oceans, 117(C1): C01001, doi: 10.1029/2011JC007231
    Qin Yuqing, Su Jie, Wang Mingfeng. 2021. Melt pond retrieval based on the LinearPolar algorithm using Landsat data. Remote Sensing, 13(22): 4674, doi: 10.3390/rs13224674
    Roeckner E, Mauritsen T, Esch M, et al. 2012. Impact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI-ESM. Journal of Advances in Modeling Earth Systems, 4(3): M00A02, doi: 10.1029/2012MS000157
    Rösel A, Kaleschke L. 2012. Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data. Journal of Geophysical Research: Oceans, 117(C5): C05018, doi: 10.1029/2011JC007869
    Schröder D, Feltham D L, Flocco D, et al. 2014. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nature Climate Change, 4(5): 353–357, doi: 10.1038/nclimate2203
    Schweiger A, Lindsay R, Zhang Jinlun, et al. 2011. Uncertainty in modeled Arctic sea ice volume. Journal of Geophysical Research: Oceans, 116(C8): C00D06, doi: 10.1029/2011JC007084
    Scott F, Feltham D L. 2010. A model of the three‐dimensional evolution of Arctic melt ponds on first‐year and multiyear sea ice. Journal of Geophysical Research: Oceans, 115(C12): C12064, doi: 10.1029/2010JC006156
    Skyllingstad E D, Paulson C A, Perovich D K. 2009. Simulation of melt pond evolution on level ice. Journal of Geophysical Research: Oceans, 114(C12): C12019, doi: 10.1029/2009JC005363
    Stroeve J C, Markus T, Boisvert L, et al. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters, 41(4): 1216–1225, doi: 10.1002/2013GL058951
    Wang Zhuo, Walsh J, Szymborski S, et al. 2020. Rapid arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies. Journal of Climate, 33(5): 1597–1617, doi: 10.1175/JCLI-D-19-0528.1
    Webster M A, Holland M, Wright N C, et al. 2022. Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model results. Elementa: Science of the Anthropocene, 10(1): 000072, doi: 10.1525/elementa.2021.000072
    Webster M A, Rigor I G, Perovich D K, et al. 2015. Seasonal evolution of melt ponds on Arctic sea ice. Journal of Geophysical Research: Oceans, 120(9): 5968–5982, doi: 10.1002/2015JC011030
    Woods C, Caballero R. 2016. The role of moist intrusions in winter Arctic warming and sea ice decline. Journal of Climate, 29(12): 4473–4485, doi: 10.1175/JCLI-D-15-0773.1
    Wright N C, Polashenski C M. 2020. How machine learning and high‐resolution imagery can improve melt pond retrieval from MODIS over current spectral unmixing techniques. Journal of Geophysical Research: Oceans, 125(2): e2019JC015569, doi: 10.1029/2019JC015569
    Xiong Chuan, Ren Yan. 2023. Arctic sea ice melt pond fraction in 2000-2021 derived by dynamic pixel spectral unmixing of MODIS images. ISPRS Journal of Photogrammetry and Remote Sensing, 197: 181–198, doi: 10.1016/j.isprsjprs.2023.01.023
    Yang Xiaoye, Zeng Gang, Wang W C, et al. 2022. Asymmetry variations in Arctic summer onset and ending: role of sea-ice melting. Environmental Research Letters, 17(11): 114039, doi: 10.1088/1748-9326/ac9dad
    Zhang Jinlun, Rothrock D A. 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131(5): 845–861, doi: 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2
    Zhang J, Schweiger A, Webster M, et al. 2018. Melt pond conditions on declining Arctic sea ice over 1979–2016: Model development, validation, and results. Journal of Geophysical Research: Oceans, 123: 7983–8003., doi: 10.1029/2018JC014298
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 录用日期:  2024-07-20
  • 网络出版日期:  2025-03-20

目录

    /

    返回文章
    返回