A deep learning model for ocean surface latent heat flux based on Transformer and data assimilation

Yahui Liu Hengxiao Li Jichao Wang

Yahui Liu, Hengxiao Li, Jichao Wang. A deep learning model for ocean surface latent heat flux based on Transformer and data assimilation[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2392-x
Citation: Yahui Liu, Hengxiao Li, Jichao Wang. A deep learning model for ocean surface latent heat flux based on Transformer and data assimilation[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2392-x

doi: 10.1007/s13131-024-2392-x

A deep learning model for ocean surface latent heat flux based on Transformer and data assimilation

Funds: The National Natural Science Foundation of China under contract Nos 42176011 and 61931025; the Fundamental Research Funds for the Central Universities of China under contract No. 24CX03001A.
More Information
    Corresponding author: E-mail: wangjc@upc.edu.cn
  • The authors declare no competing interests.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    The authors declare no competing interests.
    1) Conflict of interest:
  • Figure  1.  Simulated bathymetric distribution of the studied area.

    Figure  2.  Overall architecture of TransNetDA.

    Figure  3.  Scatterplot of TransNetDA model predictions vs. true data in January.

    Figure  4.  Scatterplot of TransNetDA model predictions vs. true data in March.

    Figure  5.  Scatterplot of TransNetDA model predictions vs. true data in May.

    Figure  6.  Scatterplot of TransNetDA model predictions vs. true data in July.

    Figure  7.  Loss and accuracy curves for model training and validation.

    Figure  8.  Comparison of 01:30, 07:30 and 13:30 real data (left), hourly TransNetDA prediction (center), and the differences between them (right) on January 1, 2021. DA frequency is opted as 6 hours for this experiment.

    Figure  9.  Scatterplot of TransNetDA model predictions vs. true data on January 1, 2021.

    Figure  10.  Comparison of 01:30, 07:30 and 13:30 real data (left), hourly TransNet prediction (center), and the differences between them (right) on January 1, 2021.

    Figure  11.  Evaluate the prediction accuracy of the TransNetDA on January 1, 2021 at different DA frequencies (6, 12 and 24 hours).

    Table  1.   Training setting of the model

    ModuleSettingSize
    DatasetsInput dimension(100, 80, 1)
    Output dimension(100, 80, 1)
    Training/Validation/Test Split2000~2019/
    2020/2021
    EncoderNumber of Layer4
    Number of Transformer Blocks[2,3,4,4]
    Embedding Dimensions[32,64,128,256]
    Norm layerLayerNorm
    DecoderNumber of Layer4
    Number of Transformer Blocks[2,3,4,4]
    Embedding Dimensions[32,64,128,256]
    下载: 导出CSV

    Table  2.   The $ {\mathrm{R}}^{2} $ and RMSE values of four models on January 1, 2021 at 01:30, 04:30, and 07:30, respectively.

    Model01:3004:3007:30
    $ {\mathrm{R}}^{2} $RMSE$ {\mathrm{R}}^{2} $RMSE$ {\mathrm{R}}^{2} $RMSE
    Persistence0.89918.7160.9569.9930.9628.739
    Climatology0.47142.8510.40641.9350.33943.109
    U-Net0.9736.9450.90711.8750.85914.215
    LSTM0.92910.3540.86313.8010.78617.633
    ConvLSTM0.9558.2830.89412.3150.83515.504
    TransNetDA0.9972.3850.9707.2270.9854.785
    下载: 导出CSV
  • Bonan G B, Doney S C. 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in earth system models. Science, 359(6375): eaam8328, doi: 10.1126/science.aam8328
    Bouttier F, Courtier P. 2002. Data assimilation concepts and methods March 1999. Meteorological Training Course Lecture Series, ECMWF,718: 59
    Brajard J, Carrassi A, Bocquet M, et al. 2020. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. Journal of Computational Science, 44: 101171, doi: 10.1016/j.jocs.2020.101171
    Carrassi A, Bocquet M, Bertino L, et al. 2018. Data assimilation in the geosciences: An overview of methods, issues, and perspectives. WIREs Climate Change, 9(5): e535, doi: 10.1002/wcc.535
    Chen Qiaochuan, Cai Candong, Chen Yaoran, et al. 2024. TemproNet: A transformer-based deep learning model for seawater temperature prediction. Ocean Engineering, 293: 116651, doi: 10.1016/j.oceaneng.2023.116651
    Chen Xiaowei, Yao Yunjun, Li Yufu, et al. 2020. ANN-based estimation of low-latitude monthly ocean latent heat flux by ensemble satellite and reanalysis products. Sensors, 20(17): 4773, doi: 10.3390/s20174773
    Chen Xueen, Zhan Peng, Chen Jinrui, et al. 2011. Numerical study of current fields near the Changjiang Estuary and impact of Quick-EnKF assimilation. Acta Oceanologica Sinica, 30(5): 33–44, doi: 10.1007/s13131-011-0145-0
    Cheng Meiling, Fang Fangxin, Navon I M, et al. 2023a. Ensemble Kalman filter for GAN-ConvLSTM based long lead-time forecasting. Journal of Computational Science, 69: 102024, doi: 10.1016/j.jocs.2023.102024
    Cheng Sibo, Quilodrán-Casas C, Ouala S, et al. 2023b. Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA Journal of Automatica Sinica, 10(6): 1361–1387, doi: 10.1109/JAS.2023.123537
    Chicco D, Warrens M J, Jurman G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7: e623, doi: 10.7717/peerj-cs.623
    Durand M, Margulis S A. 2006. Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. Journal of Hydrometeorology, 7(3): 443–457, doi: 10.1175/JHM502.1
    Erturk A, Inman D J. 2008. Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures, 17(6): 065016, doi: 10.1088/0964-1726/17/6/065016
    Evensen G. 2003. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53(4): 343–367, doi: 10.1007/s10236-003-0036-9
    Geer A J, Lonitz K, Weston P, et al. 2018. All-sky satellite data assimilation at operational weather forecasting centres. Quarterly Journal of the Royal Meteorological Society, 144(713): 1191–1217, doi: 10.1002/qj.3202
    Gharamti M E, Tjiputra J, Bethke I, et al. 2017. Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites. Ocean Modelling, 112: 65–89, doi: 10.1016/j.ocemod.2017.02.006
    Gong Daoyi, Wang Shaowu. 1998. Response of global subtropical highs to the equatorial eastern Pacific SST anomaly. Acta Oceanologica Sinica (in Chinese), 20(5): 44–54
    Guo Xiaozheng, Yao Yunjun, Tang Qingxin, et al. 2024. Multimodel ensemble estimation of Landsat-like global terrestrial latent heat flux using a generalized deep CNN-LSTM integration algorithm. Agricultural and Forest Meteorology, 349: 109962, doi: 10.1016/j.agrformet.2024.109962
    Han Kai, Xiao An, Wu Enhua, et al. 2021. Transformer in transformer. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. Online: Curran Associates Inc. , 15908–15919
    Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation, 9(8): 1735–1780, doi: 10.1162/neco.1997.9.8.1735
    Jurisic B, Uglesic I, Xemard A, et al. 2018. High frequency transformer model derived from limited information about the transformer geometry. International Journal of Electrical Power & Energy Systems, 94: 300–310
    Kessler R C, van Loo H M, Wardenaar K J, et al. 2016. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Molecular Psychiatry, 21(10): 1366–1371, doi: 10.1038/mp.2015.198
    Krasnopolsky V M, Chevallier F. 2003. Some neural network applications in environmental sciences. Part II: Advancing computational efficiency of environmental numerical models. Neural Networks, 16(3–4): 335–348, doi: 10.1016/S0893-6080(03)00026-1
    Large W G, Yeager S G. 2012. On the observed trends and changes in global sea surface temperature and air–sea heat fluxes (1984–2006). Journal of Climate, 25(18): 6123–6135, doi: 10.1175/JCLI-D-11-00148.1
    Le Gallo M, Khaddam-Aljameh R, Stanisavljevic M, et al. 2023. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nature Electronics, 6(9): 680–693, doi: 10.1038/s41928-023-01010-1
    Li Xin, Liu Feng, Ma Chunfeng, et al. 2024. Land data assimilation: Harmonizing theory and data in land surface process studies. Reviews of Geophysics, 62(1): e2022RG000801, doi: 10.1029/2022RG000801
    Liang Miaoling, Yuan Xing, Wang Wenyan. 2023. Improving the forecasts of surface latent heat fluxes and surface air temperature in the grapes global forecast system. Atmosphere, 14(8): 1241, doi: 10.3390/atmos14081241
    Lindgren F, Bolin D, Rue H. 2022. The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running. Spatial Statistics, 50: 100599, doi: 10.1016/j.spasta.2022.100599
    Liu Shan, Jing Xueyi, Chen Xingrong, et al. 2023. An assessment of the subduction rate in the CMIP6 historical experiment. Acta Oceanologica Sinica, 42(1): 44–60, doi: 10.1007/s13131-022-2108-z
    Liu Hao, Nie Xunwei, Shi Junqiang, et al. 2024. Marine heatwaves and cold spells in the Brazil Overshoot show distinct sea surface temperature patterns depending on the forcing. Communications Earth & Environment, 5(1): 102
    Liu Danian, Shi Ping, Shu Yeqiang, et al. 2016. Assimilating temperature and salinity profiles using Ensemble Kalman Filter with an adaptive observation error and T-S constraint. Acta Oceanologica Sinica, 35(1): 30–37, doi: 10.1007/s13131-016-0793-1
    Liu Y, Weerts A H, Clark M, et al. 2012. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16(10): 3863–3887, doi: 10.5194/hess-16-3863-2012
    Lorenc A C. 2003. The potential of the ensemble Kalman filter for NWP-A comparison with 4D-var. Quarterly Journal of the Royal Meteorological Society, 129(595): 3183–3203, doi: 10.1256/qj.02.132
    Madani N, Kimball J S, Parazoo N C, et al. 2020. Below-surface water mediates the response of African forests to reduced rainfall. Environmental Research Letters, 15(3): 034063, doi: 10.1088/1748-9326/ab724a
    Malik P, Vachharajani B H, Panicker D V. 2024. Logistic curve modelling of sea surface temperature and latent heat flux variability in the Tropical Indian Ocean. Dynamics of Atmospheres and Oceans, 107: 101467, doi: 10.1016/j.dynatmoce.2024.101467
    Maulik R, Rao V, Wang Jiali, et al. 2022. Efficient high-dimensional variational data assimilation with machine-learned reduced-order models. Geoscientific Model Development, 15(8): 3433–3445, doi: 10.5194/gmd-15-3433-2022
    Muhuri P S, Chatterjee P, Yuan Xiaohong, et al. 2020. Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks. Information, 11(5): 243, doi: 10.3390/info11050243
    Niu Zhaoyang, Zhong Guoqiang, Yu Hui. 2021. A review on the attention mechanism of deep learning. Neurocomputing, 452: 48–62, doi: 10.1016/j.neucom.2021.03.091
    Oke P R, Brassington G B, Griffin D A, et al. 2008. The Bluelink ocean data assimilation system (BODAS). Ocean Modelling, 21(1–2): 46–70, doi: 10.1016/j.ocemod.2007.11.002
    Olsson F, Moore T N, Carey C C, et al. 2024. A multi-model ensemble of baseline and process-based models improves the predictive skill of near-term lake forecasts. Water Resources Research, 60(3): e2023WR035901, doi: 10.1029/2023WR035901
    Pan Ming, Wood E F, Wójcik R, et al. 2008. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sensing of Environment, 112(4): 1282–1294, doi: 10.1016/j.rse.2007.02.039
    Pettorelli N, Schulte to Bühne H, Tulloch A, et al. 2018. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 4(2): 71–93, doi: 10.1002/rse2.59
    Rafieeinasab A, Seo D J, Lee H, et al. 2014. Comparative evaluation of maximum likelihood ensemble filter and ensemble Kalman filter for real-time assimilation of streamflow data into operational hydrologic models. Journal of Hydrology, 519: 2663–2675, doi: 10.1016/j.jhydrol.2014.06.052
    Reichle R H. 2008. Data assimilation methods in the Earth sciences. Advances in Water Resources, 31(11): 1411–1418, doi: 10.1016/j.advwatres.2008.01.001
    Reichstein M, Camps-Valls G, Stevens B, et al. 2019. Deep learning and process understanding for data-driven earth system science. Nature, 566(7743): 195–204, doi: 10.1038/s41586-019-0912-1
    Ruiz J J, Pulido M, Miyoshi T. 2013. Estimating model parameters with ensemble-based data assimilation: A review. Journal of the Meteorological Society of Japan, 91(2): 79–99
    Salahuddin Z, Woodruff H C, Chatterjee A, et al. 2022. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. Computers in Biology and Medicine, 140: 105111, doi: 10.1016/j.compbiomed.2021.105111
    Shan Hongming, Zhang Yi, Yang Qingsong, et al. 2018. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Transactions on Medical Imaging, 37(6): 1522–1534, doi: 10.1109/TMI.2018.2832217
    Stergiou A, Poppe R. 2023. AdaPool: Exponential adaptive pooling for information-retaining downsampling. IEEE Transactions on Image Processing, 32: 251–266, doi: 10.1109/TIP.2022.3227503
    Tang Shengquan, Chen Xueen, Zeng Zhi, et al. 2022. Numerical investigation of the South China Sea deep circulation. Acta Oceanologica Sinica, 41(5): 1–11, doi: 10.1007/s13131-021-1879-y
    Tierney L, Mira A. 1999. Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine, 18(17–18): 2507–2515, doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
    Usama M, Ahmad B, Song Enmin, et al. 2020. Attention-based sentiment analysis using convolutional and recurrent neural network. Future Generation Computer Systems, 113: 571–578, doi: 10.1016/j.future.2020.07.022
    Wang Yansen, Tao Weikuo, Simpson J. 1996. The impact of ocean surface fluxes on a TOGA COARE convective system. Monthly Weather Review, 124(12): 2753–2763, doi: 10.1175/1520-0493(1996)124<2753:TIOOSF>2.0.CO;2
    Ward E J, Holmes E E, Thorson J T, et al. 2014. Complexity is costly: A meta-analysis of parametric and non-parametric methods for short-term population forecasting. Oikos, 123(6): 652–661, doi: 10.1111/j.1600-0706.2014.00916.x
    Yang L M, Grooms I. 2021. Machine learning techniques to construct patched analog ensembles for data assimilation. Journal of Computational Physics, 443: 110532, doi: 10.1016/j.jcp.2021.110532
    Yucel I, Onen A, Yilmaz K K, et al. 2015. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology, 523: 49–66, doi: 10.1016/j.jhydrol.2015.01.042
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-04
  • 录用日期:  2024-08-12
  • 网络出版日期:  2025-03-08

目录

    /

    返回文章
    返回