Field observation of air-sea CO2 and H2O flux using the eddy covariance method based on 100 Hz gas analyzer in the Bohai and Yellow Seas

Tan Yu Yuhan Xia Zhengli Qiu Bangyi Tao Yan Bai Xianqiang He Bing Chen Mingxing Li Yu Wang Qilan Zhang Chao Liang

Tan Yu, Yuhan Xia, Zhengli Qiu, Bangyi Tao, Yan Bai, Xianqiang He, Bing Chen, Mingxing Li, Yu Wang, Qilan Zhang, Chao Liang. Field observation of air-sea CO2 and H2O flux using the eddy covariance method based on 100 Hz gas analyzer in the Bohai and Yellow Seas[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2393-9
Citation: Tan Yu, Yuhan Xia, Zhengli Qiu, Bangyi Tao, Yan Bai, Xianqiang He, Bing Chen, Mingxing Li, Yu Wang, Qilan Zhang, Chao Liang. Field observation of air-sea CO2 and H2O flux using the eddy covariance method based on 100 Hz gas analyzer in the Bohai and Yellow Seas[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2393-9

doi: 10.1007/s13131-024-2393-9

Field observation of air-sea CO2 and H2O flux using the eddy covariance method based on 100 Hz gas analyzer in the Bohai and Yellow Seas

Funds: The National Key Research and Development Program of China under contract NO. 2022YFC3104203 and 2018YFC0213103; Science Foundation of Donghai Laboratory under contract NO. DH-2022KF01019; The National Natural Science Foundation, grant number 41906152 and 2023 Shanghai Education Science Research Project, grant number C2023120.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Air-sea flux observation platforms. Symbol‘★’is the observation platform of Juehua Island, and‘▲’is the Yantai National Satellite Ocean Calibration Platform.

    Figure  2.  High-frequency 100 Hz pulsating gas analyzer. (a) CO2 gas analyzer; (b) H2O gas analyzer.

    Figure  3.  In situ observation experiments. (a) and (b) are the Yantai National Satellite Ocean Calibration Platform and the island observation platform at Juehua Island, Liaoning Province, respectively; (c) and (d) are the instrumentation of platforms (a) and (b), respectively.

    Figure  4.  Raw data preprocessing and air-sea flux calculation flow chart. The dashed boxes represent steps that are not included in the main air-sea flux calculation process and are discussed separately in this article.

    Figure  5.  Delay times. Delay time of ultrasonic anemometer with high-frequency CO2 pulsometer (a) and with high-frequency water vapor pulsometer (b).

    Figure  6.  Three-dimensional wind speed correction. (a) Before correction; (b) after correction. In the Fig., “○” is the average of 5 min wind speed samples from the offshore platform and the solid line is the vertical distance between “○” and the u-v plane.

    Figure  7.  Ogive curves of downwind and vertical wind speeds plotted for 16 randomly selected days from our July 2021 offshore platform observations, and randomly selecting 1 hour data each day. Each Ogive Curve corresponds to one hour of data from one of the days. $ z/L= 0 $.

    Figure  8.  Water vapor flux WPL correction (July 10, 2021). Black lines indicate uncorrected air-sea fluxes; solid gray lines indicate corrected results; red dashed lines indicate the difference between pre-correction minus correction, and “//” indicates truncated invalid data.

    Figure  9.  Wind speed power spectra. (a), (b), (c) and (d), (e), (f) are the power spectra of offshore platforms and island of $ u $, $ v $, and $ w $, respectively; solid gray lines indicate measured data, “○” indicates averaged data, and dashed lines indicate “–2/3” slopes.

    Figure  10.  Co-spectral analysis. (a), (b) are co-spectra of $ w $ with H2O and CO2, respectively. The solid gray line indicates co-spectra of $ w $ with H2O (Fig. 10a) and CO2 (Fig. 10b) respectively. And “●” indicates averaged co-spectra data, the dashed line indicates the “–4/3” slope; the solid black line indicates the Kaimal et al. (1972) is suitable for atmospheric stabilization.

    Figure  11.  Overall turbulence data quality for island water vapor flux observations. “■” denotes high quality data; “▼” denotes moderate quality data; “×” denotes invalid data.

    Figure  12.  Air-sea flux observations from offshore platforms. (a) is the water vapor flux and (b) is the CO2 flux. “▼” denotes 100 Hz frequency; “●” denotes 20 Hz frequency; dashed line denotes zero air-sea flux.

    Figure  13.  Comparison of observed air-sea fluxes at different frequencies over the island. (a) Difference between 100 Hz and 20 Hz air-sea fluxes; (b), (c), and (d) are partial zoomed-in plots showing island air-sea flux observations on July 9, 10, and 11, 2021, respectively. The “//” denotes the axes of the truncated, partially invalid data, “▼” denotes 100 Hz, and “●” denotes 20 Hz.

    Figure  14.  Water vapor and CO2 concentrations over time; (a) and (b) are water vapor versus time for offshore platform and island data, respectively. The inner image of (a) is its local zoom; (c) is the CO2 variation with time. The red solid line indicates 100 Hz observations and the black solid line indicates 20 Hz observations.

    Figure  15.  Island and nearshore air-sea fluxes vary with wind speed; red dots indicate 100 Hz observed air-sea fluxes, black squares indicate 20 Hz observed air-sea fluxes; error bars indicate 95% confidence intervals.

    Figure  16.  Trends and confidence analyses of air-sea CO2 and water vapor fluxes; red dots indicate 100 Hz air-sea flux data, blue dots indicate 20 Hz air-sea flux data; red and blue lines indicate fitted curves; and shaded areas indicate 95% confidence limits.

    Table  1.   Measuring range of Ultrasonic anemometer

    Instrument
    /parameter
    Wind speed range Wind speed accuracy Wind direction range Wind accuracy Measuring frequency Installation
    site
    HS-100 0-45 m/s <1.0% RMS 0-359° <±1.0°RMS 100 Hz Island & Platform
    下载: 导出CSV

    Table  2.   Measuring range of CO2/H2O gas analyzer

    Instrument/parameter Concentration Measuring frequency Installation site
    Licor-7500A 0—50 mmol/mol
    0—3 000 10–6
    10 Hz Island
    Licor-7500DS 0—50 mmol/mol
    0—3 000 10–6
    20 Hz Platform
    *CO2/H2O High frequency pulsometer * 100 Hz Island & platform
    Note: The symbol “*” indicates that the measuring range is limited by reference to the Licor measuring range.
    下载: 导出CSV

    Table  3.   Turbulence data quality classification standards.

    Turbulence stability (%) Turbulence development adequacy (%) overall quality level
    <30 <30 0
    <100 <100 1
    >100 >100 2
    Note: * Level 0 is high quality data that can be used for basic research analysis; Grade 1 is medium quality data, which can be used for general air-sea flux analysis; Level 2 is low-quality data and should be discarded or interpolated.
    下载: 导出CSV
  • Baldocchi D D. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4): 479–492, doi: 10.1046/j.1365-2486.2003.00629.x
    Baldocchi D D, Hincks B B, Meyers T P. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69(5): 1331–1340, doi: 10.2307/1941631
    Blomquist B W, Fairall C W, Huebert B J, et al. 2012. Direct measurement of the oceanic carbon monoxide flux by eddy correlation. Atmospheric Measurement Techniques, 5(12): 3069–3075, doi: 10.5194/amt-5-3069-2012
    Brevik E C. 2012. Soils and climate change: gas fluxes and soil processes. Soil Horizons, 53(4): 12–23, doi: 10.2136/sh12-04-0012
    Burba G. 2013. Eddy Covariance Method: for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. Lincoln: LI-COR Biosciences, 22–25
    Coe D, W. Fabinski, G. Wiegleb. 2021. The impact of CO2, H2O and other “greenhouse gases” on equilibrium earth temperatures. International Journal of Atmospheric and Oceanic Sciences, 5(2): 29–40., doi: 10.11648/j.ijaos.20210502.12
    Czubaszek R, Wysocka-Czubaszek A. 2023. Temporal dynamics of CO2 fluxes measured with eddy covariance system in maize, winter oilseed rape and winter wheat fields. Atmosphere, 14(2): 372, doi: 10.3390/atmos14020372
    Else B G T, Papakyriakou T N, Galley R J, et al. 2011. Wintertime CO2 fluxes in an Arctic polynya using eddy covariance: evidence for enhanced air-sea gas transfer during ice formation. Journal of Geophysical Research: Oceans, 116(C9): C00G03
    Eugster W, Burkard R, Klemm O, et al. 2001. Fog deposition measurements with the eddy covariance method. In: Schemenauer R, Puxbaum H, eds. Proceedings of the Second International Conference on Fog and Fog Collection. St. John’s, Canada: 193–196
    Foken T, Göockede M, Mauder M, et al. 2005. Post-field data quality control. In: Lee Xuhui, Massman W, Law B, eds. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Dordrecht: Springer, 181–208
    Geernaert G L. 1988. Measurements of the angle between the wind vector and wind stress vector in the surface layer over the North Sea. Journal of Geophysical Research: Oceans, 93(C7): 8215–8220, doi: 10.1029/JC093iC07p08215
    Hart S C. 2006. Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study. Global Change Biology, 12(6): 1032–1046, doi: 10.1111/j.1365-2486.2006.01159.x
    Højstrup J. 1993. A statistical data screening procedure. Measurement Science and Technology, 4(2): 153–157, doi: 10.1088/0957-0233/4/2/003
    Horst T W. 2000. On frequency response corrections for eddy covariance flux measurements. Boundary-Layer Meteorology, 94(3): 517–520, doi: 10.1023/A:1002427517744
    Hu Enzhu, Babcock E L, Bialkowski S E, et al. 2014. Methods and techniques for measuring gas emissions from agricultural and animal feeding operations. Critical Reviews in Analytical Chemistry, 44(3): 200–219, doi: 10.1080/10408347.2013.843055
    IPCC. 2023. Climate Change 2023: Synthesis Report. Geneva, Switzerland: IPCC,119–130
    Jentzsch K, Boike J, Foken T. 2021. Importance of the Webb, Pearman, and Leuning (WPL) correction for the measurement of small CO2 fluxes. Atmospheric Measurement Techniques, 14(11): 7291–7296, doi: 10.5194/amt-14-7291-2021
    Kaimal J C, Wyngaard J C, Izumi Y, et al. 1972. Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417): 563–589
    Kaye J P, Quemada M. 2017. Using cover crops to mitigate and adapt to climate change. A review. Agronomy for Sustainable Development, 37(1): 4, doi: 10.1007/s13593-016-0410-x
    Kondo F, Tsukamoto O. 2007. Air-sea CO2 flux by eddy covariance technique in the equatorial Indian Ocean. Journal of Oceanography, 63(3): 449–456, doi: 10.1007/s10872-007-0040-7
    Landwehr S, Miller S D, Smith M J, et al. 2018. Using eddy covariance to measure the dependence of air–sea CO2 exchange rate on friction velocity. Atmospheric Chemistry and Physics, 18(6): 4297–4315, doi: 10.5194/acp-18-4297-2018
    Lee Xuhui, Massman W, Law B. 2005. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Dordrecht: Springer, 94–193
    Li Shuo, Babanin A V, Qiao Fangli, et al. 2021a. Laboratory experiments on CO2 gas exchange with wave breaking. Journal of Physical Oceanography, 51(10): 3105–3116
    Li Mingxing, Kan Ruifeng, He Yabai, et al. 2021b. Development of a laser gas analyzer for fast CO2 and H2O flux measurements utilizing derivative absorption spectroscopy at a 100 Hz data rate. Sensors, 21(10): 3392, doi: 10.3390/s21103392
    Liu Shuo, Liu Gang, Zhang Mi, et al. 2022. Evaluation of eddy covariance footprint models through the artificial line source emission of methane. Journal of Geophysical Research: Atmospheres, 127(16): e2021JD036294, doi: 10.1029/2021JD036294
    Mammarella I, Launiainen S, Gronholm T, et al. 2009. Relative humidity effect on the high-frequency attenuation of water vapor flux measured by a closed-path eddy covariance system. Journal of Atmospheric and Oceanic Technology, 26(9): 1856–1866, doi: 10.1175/2009JTECHA1179.1
    Matthews B, Schume H. 2022. Tall tower eddy covariance measurements of CO2 fluxes in Vienna, Austria. Atmospheric Environment, 274: 118941, doi: 10.1016/j.atmosenv.2022.118941
    Mauder M, Foken T. 2015. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3. Bayreuth: Arbeitsergebnisse, Universität Bayreuth, Abteilung Mikrometeorologie, 67
    Miller S D, Hristov T S, Edson J B, et al. 2008. Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. Journal of Atmospheric and Oceanic Technology, 25(9): 1683–1694, doi: 10.1175/2008JTECHO547.1
    Miller S D, Marandino C, Saltzman E S. 2010. Ship-based measurement of air-sea CO2 exchange by eddy covariance. Journal of Geophysical Research: Atmospheres, 115(D2): D02304
    Moncrieff J, R Clement, J Finnigan, et al. 2004. Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In: Lee X, Massman W, Law B, eds. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Dordrecht: Springer, Dordrecht
    Oncley S P, Friehe C A, Larue J C, et al. 1996. Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. Journal of the Atmospheric Sciences, 53(7): 1029–1044, doi: 10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2
    Palatella L, Rana G, Vitale D. 2014. Towards a flux-partitioning procedure based on the direct use of high-frequency eddy-covariance data. Boundary-Layer Meteorology, 153(2): 327–337, doi: 10.1007/s10546-014-9947-x
    Panofsky H A, Dutton J A. 1984. Atmospheric Turbulence: Models and Methods for Engineering Applications. New York: Wiley
    Rannik Ü, Vesala T. 1999. Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorology, 91(2): 259–280, doi: 10.1023/A:1001840416858
    Rytwo G, Eliyahou D. 2023. Eddy correlation measurements to visualize CO2 and water vapor concentrations and fluxes. Journal of Agrometeorology, 25(2): 239–246, doi: 10.54386/jam.v25i2.2103
    Shahan Julie, Chu Housen, Windham-Myers L, et al. 2022. Combining eddy covariance and chamber methods to better constrain CO2 and CH4 fluxes across a heterogeneous restored tidal wetland. Journal of Geophysical Research: Biogeosciences, 127(9): e2022JG007112, doi: 10.1029/2022JG007112
    Shukla P R, J Skea, E Calvo Buendia, et al. 2019. IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
    Siebicke L, Emad A. 2019. True eddy accumulation trace gas flux measurements: proof of concept. Atmospheric Measurement Techniques, 12(8): 4393–4420, doi: 10.5194/amt-12-4393-2019
    Stagakis S, Feigenwinter C, Vogt R, et al. 2023. A high-resolution monitoring approach of urban CO2 fluxes. Part 1-bottom-up model development. Science of the Total Environment, 858: 160216, doi: 10.1016/j.scitotenv.2022.160216
    Su Hongbing, Schmid H P, Grimmond C S B, et al. 2004. Spectral characteristics and correction of long-term eddy-covariance measurements over two mixed hardwood forests in non-flat terrain. Boundary-Layer Meteorology, 110(2): 213–253, doi: 10.1023/A:1026099523505
    Swinbank W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Atmospheric Sciences, 1951, 8(3): 135-145.
    Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14(3): 512–526, doi: 10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
    Weber R O. 1999. Remarks on the definition and estimation of friction velocity. Boundary-Layer Meteorology, 93(2): 197–209, doi: 10.1023/A:1002043826623
    Wilczak J M, Oncley S P, Stage S A. 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 99(1): 127–150, doi: 10.1023/A:1018966204465
    Wuebbles D J, Grant K E, Connell P S, et al. 1989. The role of atmospheric chemistry in climate change. JAPCA, 39(1): 22–28, doi: 10.1080/08940630.1989.10466502
  • 加载中
计量
  • 文章访问数:  40
  • HTML全文浏览量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 录用日期:  2024-09-06
  • 网络出版日期:  2025-03-12

目录

    /

    返回文章
    返回