Detection and Analysis of Spartina alterniflora in Chongming East Beach Using Sentinel-2 Imagery and Image Texture Features

Xinyu Mei Zhongbiao Chen Runxia Sun Yijun He

Xinyu Mei, Zhongbiao Chen, Runxia Sun, Yijun He. Detection and Analysis of Spartina alterniflora in Chongming East Beach Using Sentinel-2 Imagery and Image Texture Features[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2394-8
Citation: Xinyu Mei, Zhongbiao Chen, Runxia Sun, Yijun He. Detection and Analysis of Spartina alterniflora in Chongming East Beach Using Sentinel-2 Imagery and Image Texture Features[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2394-8

doi: 10.1007/s13131-024-2394-8

Detection and Analysis of Spartina alterniflora in Chongming East Beach Using Sentinel-2 Imagery and Image Texture Features

Funds: The National Key Research and Development Program of China under contract No. 2023YFC3008204; the National Natural Science Foundation of China under contract Nos 41977302 and 42476217.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of the study area.

    Figure  2.  The process framework of this study.

    Figure  3.  The curve of cross-validated scores as the number of features changes, based on RFECV feature selection applied to the original 20-dimensional features. A line chart of (a) RF+RFECV, a line chart of (b) LightGBM+RFECV and a line chart of (c) XGBoost+RFECV are showed on the top.

    Figure  4.  Model accuracy with different features. (a) The feature importance of the RF model and the overall model accuracy as the feature combination changes. (b) The variation of Spartina alterniflora classification accuracy with different feature combinations.

    Figure  5.  Accuracy of various land covers under different models. (a) Comparison of different models under 20 feature combinations. (b) Comparison of optimal models.

    Figure  6.  The selected four Sentinel-2 images from (a) January 21, 2020, (b) April 23, 2020, (c) June 2, 2020, and (d) September 5, 2020, for land cover classification and Spartina alterniflora detection. Figure 6e represents the land cover interpretation results.

    Figure  7.  The SHAP summary plot for each land cover type. (a) SHAP summary plot for farmland classification, (b) SHAP summary plot for breed classification, (c) SHAP summary plot for Spartina alterniflora classification, (d) SHAP summary plot for Staggered bands classification, (e) SHAP summary plot for water classification, (f) SHAP summary plot for other classification.

    Table  1.   Spectral bands of Sentinel-2 MSI L2A (Segarra et al., 2020).

    BandsWavelength (nm)Resolution (m)
    B1-Coastal aerosol433-45360
    B2-Blue458-52310
    B3-Green543-57810
    B4-Red650-68010
    B5-Vegetation red edge698-71320
    B6-Vegetation red edge733-74820
    B7-Vegetation red edge773-79320
    B8-NIR785-90010
    B8A-Narrow NIR855-87520
    B9-Water vapour935-95560
    B11-SWIR1565-165520
    B12-SWIR2100-228020
    下载: 导出CSV

    Table  2.   Training and validation data of different land cover types.

    TypesLabelTraining
    samples
    Validation
    samples
    farmland1229
    reed2198
    Spartina alterniflora3209
    Staggered-bands4177
    water52310
    other (Bare ground,
    building,Scirpus)
    6219
    下载: 导出CSV

    Table  3.   The classification accuracy of wetland features in the experimental area using different algorithms.

    type RF_20 RF_8 XGB_20 XGB_19 LGBM_20 LGBM_8
    PA (%) UA (%) PA UA PA UA PA UA PA UA PA UA
    farmland 99.97 100 99.95 100 99.97 99.98 99.95 100 99.95 99.98 100 100
    reed 99.49 98.99 99.77 99.33 99.77 99.55 99.71 99.54 99.72 99.83 99.72 99.94
    Spartina 99.37 98.84 99.50 99.59 99.59 99.62 99.71 99.59 99.75 99.50 99.65 99.59
    staggered 98.26 99.58 99.23 99.38 99.23 99.33 99.17 99.48 99.13 99.59 99.18 99.28
    water 100 99.99 99.99 99.99 99.99 99.99 99.99 99.99 100 99.99 100 99.99
    other 100 100 100 100 100 100 100 100 100 99.73 100 99.81
    OA 99.91 99.94 99.95 99.95 99.95 99.95
    1 Spartina stands for Spartina alterniflora; staggered stands for Spartina alterniflora-reed mixed staggered zone; type stands for land cover type.
    下载: 导出CSV
  • Chen Xuewen, Jeong J C. 2007. Enhanced recursive feature elimination. In: Sixth International Conference on Machine Learning and Applications (ICMLA 2007). Cincinnati: IEEE, 429–435
    Costanza R, d’Arge R, De Groot R, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630): 253–260, doi: 10.1038/387253a0
    Cui Bin’ge, Wu Jing, Li Xinhui, et al. 2023. Combination of deep learning and vegetation index for coastal wetland mapping using GF-2 remote sensing images. National Remote Sensing Bulletin (in Chinese), 27(6): 1376–1386, doi: 10.11834/jrs.20221658
    Ding Wenhui, Jiang Junyan, Li Xiuzhen, et al. 2015. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan. Chinese Journal of Plant Ecology (in Chinese), 39(7): 704–716, doi: 10.17521/cjpe.2015.0067
    Feng Kaidong, Mao Dehua, Qiu Zhiqiang, et al. 2022. Can time-series sentinel images be used to properly identify wetland plant communities?. GIScience & Remote Sensing, 59(1): 2202–2216
    Gao Zhiqiang, Ai Jinquan, Gao Wei, et al. 2016. Integrating pan-sharpening and classifier ensemble techniques to map an invasive plant (Spartina alterniflora) in an estuarine wetland using Landsat 8 imagery. Journal of Applied Remote Sensing, 10(2): 026001, doi: 10.1117/1.JRS.10.026001
    Grinsztajn L, Oyallon E, Varoquaux G. 2022. Why do tree-based models still outperform deep learning on typical tabular data?. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc. , 507–520
    Hall-Beyer M. 2017. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing, 38(5): 1312–1338, doi: 10.1080/01431161.2016.1278314
    Jiang Lifen, Luo Yiqi, Chen Jiakuan, et al. 2009. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine, Coastal and Shelf Science, 81 (1): 74–82
    Lan Zeying, Liu Yang. 2018. Study on multi-scale window determination for GLCM texture description in high-resolution remote sensing image geo-analysis supported by GIS and domain knowledge. ISPRS International Journal of Geo-Information, 7(5): 175, doi: 10.3390/ijgi7050175
    Lundberg S M, Erion G, Chen H, et al. 2020. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1): 56–67, doi: 10.1038/s42256-019-0138-9
    Lundberg S M, Lee S I. 2017. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 4768–4777
    Mahdavi S, Salehi B, Granger J, et al. 2018. Remote sensing for wetland classification: A comprehensive review. GIScience & Remote Sensing, 55(5): 623–658
    Meng Xiangzhen, Liu Dan, Huang Ke, et al. 2021. Extraction method of Spartina alterniflora based on vegetation phenology characteristics: a case study of wetlands in the Changjiang River Delta. Marine Science Bulletin (in Chinese), 40(5): 591–600
    Ouyang Zutao, Gao Yu, Xie Xiao, et al. 2013. Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PLoS ONE, 8(6): e67315, doi: 10.1371/journal.pone.0067315
    Ren Guangbo, Liu Yanfen, Ma Yi, et al. 2014. Spartina alterniflora monitoring and change analysis in Yellow River Delta by remote sensing technology. Acta Laser Biology Sinica (in Chinese), 23(6): 596–603
    Segarra J, Buchaillot M L, Araus J L, et al. 2020. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5): 641, doi: 10.3390/agronomy10050641
    Shao Chunchen, Yang Gang, Sun Weiwei, et al. 2024. Construction method of a Spartina alterniflora index based on hyperspectral satellite images. National Remote Sensing Bulletin (in Chinese), 28(3): 635–648, doi: 10.11834/jrs.20242621
    Shu Minyan, Tian Bo, Ding Lixia, et al. 2019. Spectral analysis of an intertidal saltmarsh in the Yangtze Estuary. Journal of Zhejiang A& F University (in Chinese), 36(1): 107–117
    Tang Chendong. 2016. Ecological control of Spartina alterniflora and improvement of birds habitats in Chongming Dongtan wetland, Shanghai. Wetland Science & Management (in Chinese), 12(3): 4–8
    Xu Wei, Zhou Yunxuan, Shen Fang, et al. 2018. Recognition and extraction of phragmites australis salt marsh vegetation in Chongming tidal flat from Sentinel-1A SAR data. Journal of Jilin University (Earth Science Edition) (in Chinese), 48(4): 1192–1200
    Yao Hongyan, Liu Pudong, Shi Runhe, et al. 2017. Extracting the transitional zone of Spartina alterniflora and Phragmites australis in the wetland using high-resolution remotely sensed images. Journal of Geo-Information Science (in Chinese), 19(10): 1375–1381
    Zhang Xin, Cui Jintian, Wang Weisheng, et al. 2017. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors, 17(7): 1474, doi: 10.3390/s17071474
    Zhang Siqing, Liu Yi, Liu Yiran, et al. 2021. Cellular automata simulation of population expansion dynamics of Spartina alterniflora in the Yellow River Delta. Journal of Beijing Normal University (Natural Science) (in Chinese), 57(1): 121–127
    Zhang Xi, Xiao Xiangming, Qiu Shiyun, et al. 2022. Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images. Remote Sensing of Environment, 269: 112810, doi: 10.1016/j.rse.2021.112810
    Zhu Yuling, Wang Jianbu, Wang Andong, et al. 2019. Remote-sensed monitoring of Spartina alterniflora using deep convolutional neural network method with fusion of shallow features. Marine Sciences (in Chinese), 43(7): 12–22
  • 加载中
计量
  • 文章访问数:  59
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 录用日期:  2024-09-12
  • 网络出版日期:  2025-03-08

目录

    /

    返回文章
    返回