A study of the landforms and megafaunal characteristics of the Caiwei Guyot area by manned submersible image data-driven technology

Zhongjun Ding Xingyu Wang Chen Liu Guangyang Ma Chanjuan Cao

Zhongjun Ding, Xingyu Wang, Chen Liu, Guangyang Ma, Chanjuan Cao. A study of the landforms and megafaunal characteristics of the Caiwei Guyot area by manned submersible image data-driven technology[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2399-3
Citation: Zhongjun Ding, Xingyu Wang, Chen Liu, Guangyang Ma, Chanjuan Cao. A study of the landforms and megafaunal characteristics of the Caiwei Guyot area by manned submersible image data-driven technology[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-024-2399-3

doi: 10.1007/s13131-024-2399-3

A study of the landforms and megafaunal characteristics of the Caiwei Guyot area by manned submersible image data-driven technology

Funds: The Key Research and Development Program of Shandong Province of China under contract No. 2020JMRH0101; The National Key Research and Development Project of China under contract No. 2021YFC2802100; Qingdao Natural Science Foundation under contract No. 24-4-4-zrij-127-jch.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Topographic map of the Caiwei Guyot.

    Figure  2.  Method architecture.

    Figure  3.  Detection principle of YOLOv5.

    Figure  4.  Incremental SFM flow chart.

    Figure  5.  Structure diagram of PatchmatchNet.

    Figure  6.  Algorithm comparison results. a. Original drawing, b. MSRCR, c. DCP, d. AGCW, and e. this method.

    Figure  7.  SIFT feature detection effect visualization.

    a. Fig. 1, b. Fig. 1 with enhanced algorithm, c. Fig. 2, d. Fig. 2 with enhanced algorithm, e. Fig. 3, f. Fig. 3 with enhanced algorithm, g. Fig. 4, and h. Fig. 4 with enhanced algorithm.

    Figure  8.  The recognition effect of YOLOv5 at two locations in the Caiwei Guyot area.

    Figure  9.  Comparison of YOLOv5n test value and ground truth.

    Figure  10.  Comparison between the ground truth and the reconstructed point cloud.

    Figure  11.  Part of the microgeomorphic 3D reconstruction result.

    Figure  12.  Number of main groups.

    Figure  13.  The Percentage distribution of main groups.

    Figure  14.  Number of main groups in each region.

    a. South peak, b. south slope, c. western foothills, d. north peak, e. first section of the north slope, f. second section of the north slope, g. west side of the seamount, and h. northern foothills.

    Figure  15.  3D reconstruction results of part of the Caiwei Guyot area.

    Table  1.   Video parameters

    Resolution ratio Frame rate format Encoding method Color space
    1920 × 1080 25 H.264 RGB
    下载: 导出CSV

    Table  2.   Comparison of experimental results of the UIQM index

    ImageOriginalMSRCRDCPAGCWThis method
    10.742.340.931.094.50
    22.032.992.431.824.89
    31.532.482.071.554.99
    42.873.284.023.054.87
    Average1.802.772.361.884.81
    下载: 导出CSV

    Table  3.   Comparative experimental results of different algorithms

    ModelmAP0.5 (%)mAP0. 5:0.95 (%)Param (M)
    Faster RCNN67.944.4137.1
    YOLOv394.979.161.5
    YOLOv3-Tiny93.974.58.7
    YOLOv7-Tiny91.167.66.0
    YOLOv5n93.672.91.8
    下载: 导出CSV

    Table  4.   Species composition

    PhylumClassOrder/family/genusNumber
    PoriferaDemospongiaeCallyspongiidae sp.41
    Cladorhizidae sp.3
    Chondrocladia sp.3
    HexactinellidaCaulophacus sp.16
    Poliopogon sp.19
    Hyalonema sp.12
    Corbitellinae sp.17
    Bolosoma sp.5
    Rhizophyta sp.4
    Tretopleura sp.3
    Saccocalyx sp.1
    Semperella sp.106
    CnidariaAnthozoaChrysogorgia sp.5
    Fungiacyathus stephanus sp.1
    Primnoidae sp.14
    Actinoscyphia sp.1
    Keratoisididae sp.56
    Iridogorgia sp.6
    Bathypathes sp.3
    Actinostolidae sp.3
    Actiniaria sp.5
    AnnelidaPolychaetaPhyllodocida sp.1
    Polynoidae sp.2
    ArthropodaMalacostracaHeterocarpus sp.17
    Aristeidae sp.18
    Nematocarcinus sp.4
    EchinodermataCrinoideaCrinoidea sp.9
    Hyocrinidae sp.3
    Bathycrinidae sp.4
    Pentametrocrinidae sp.7
    AsteroideaFreyastera sp.7
    Pterasteridae sp.1
    Asteroidea sp.1
    Freyellidae sp.8
    Freyastera basketa5
    Brisingidae sp.2
    Freyastera mortenseni1
    EchinoideaEchinoidea sp.8
    HolothuroideaParoriza sp.1
    Hansenothuria sp.2
    Paelopatides sp.32
    Synallactidae sp.13
    Psychropotes sp.11
    Elpidiidae sp.5
    Enypniastes sp.2
    Molpadidemas sp.4
    Holothuroidea sp.1
    Peniagone sp.1
    Benthodytes sp.3
    ChordataActinopterygiiAldrovandia afinis10
    Ophidiiformes sp.9
    Synaphobranchidae sp.13
    Halosauridae sp.9
    Ophidiidae sp.15
    Macrouridae sp.6
    Abyssoberyx sp.3
    下载: 导出CSV

    Table  5.   Main groups and dominance

    Class Degree of dominance
    Demospongiae 0.005
    Hexactinellida 0.05
    Anthozoa 0.03
    Polychaeta 0.0043
    Malacostraca 0.0082
    Crinoidea 0.0064
    Asteroidea 0.007
    Echinoidea 0.002
    Holothuroidea 0.008
    Actinopterygii 0.01
    下载: 导出CSV
  • Aanæs H, Jensen R R, Vogiatzis G, et al. 2016. Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 120(2): 153–168, doi: 10.1007/s11263-016-0902-9
    Ancuti C O, Ancuti C, De Vleeschouwer C, et al. 2018. Color balance and fusion for underwater image enhancement. IEEE Transactions on Image Processing, 27(1): 379–393, doi: 10.1109/TIP.2017.2759252
    Baker M R, Williams K, Greene H G, et al. 2021. Use of manned submersible and autonomous stereo-camera array to assess forage fish and associated subtidal habitat. Fisheries Research, 243: 106067, doi: 10.1016/j.fishres.2021.106067
    Barnes C, Shechtman E, Finkelstein A, et al. 2009. PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (TOG), 28(3): 24
    Catmull E E. 1974. A subdivision algorithm for computer display of curved surfaces. Springfield: NTIS
    Chen Jiazhang, Meng Shunlong, You Yang, et al. 2009. Characteristic of phytoplankton community in Lake Wuli, Lake Taihu. Ecology and Environmental Sciences (in Chinese), 18(4): 1358–1367, doi: 10.16258/j.cnki.1674-5906(2009)04-1358-10
    Collot J Y, Lallemand S, Pelletier B, et al. 1992. Geology of the d'Entrecasteaux-New Hebrides arc collision zone: results from a deep submersible survey. Tectonophysics, 212(3–4): 213–217, 221–241
    Dai Jifeng, Qi Haozhi, Xiong Yuwen, et al. 2017. Deformable convolutional networks. In: Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 764–773
    Ding Zhongjun. 2021. Operational Techniques for Deep-Sea Manned Submersible Exploration (in Chinese). Harbin: Harbin Engineering University Press, 26–35
    Ding Zhongjun, Liu Chen, Li Dewei, et al. 2023. Deep-sea biological detection method based on lightweight YOLOv5n. Sensors, 23(20): 8600, doi: 10.3390/s23208600
    Duan Xiaoxu, Duan Jun, Zhang Xiangxiang. 2023. Study on the typical micro-geomorphologic characteristics of seabed in a certain sea area in southern Zhuhai. Guizhou Science (in Chinese), 41(3): 59–62,91
    Geyer R A. 1977. Submersibles and their use in oceanography and ocean engineering. Ocean Management, 3(2): 137–148, doi: 10.1016/0302-184X(77)90012-9
    Grinyó J, Francescangeli M, Santín A, et al. 2022. Megafaunal assemblages in deep-sea ecosystems of the Gulf of Cadiz, northeast Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 183: 103738, doi: 10.1016/j.dsr.2022.103738
    Guo Binbin, Wang Weiqiang, Shu Yeqiang, et al. 2020. Observed deep anticyclonic cap over Caiwei Guyot. Journal of Geophysical Research: Oceans, 125(10): e2020JC016254, doi: 10.1029/2020JC016254
    Hou Zhongsheng, Xu Jianxin. 2009. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica (in Chinese), 35(6): 650–667, doi: 10.3724/SP.J.1004.2009.00650
    Jiang Xinbei, Gao Tianhan, Zhu Zichen, et al. 2021. Real-time face mask detection method based on YOLOv3. Electronics, 10(7): 837, doi: 10.3390/electronics10070837
    Jobson D J, Rahman Z U, Woodell G A. 1997. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6(7): 965–976, doi: 10.1109/83.597272
    Jocher G. 2020. Ultralytics YOLOv5. https://docs.ultralytics.com/zh/models/yolov5/#citations-and-acknowledgements
    Li Lifu, Liang Yi. 2021. Deep learning target vehicle detection method based on YOLOv3-tiny. In: Proceedings of 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference. Chongqing: IEEE, 1575–1579
    Li Dong, Zhao Jun, Liu Chenggang et al. 2018. Advances of living environment characteristics and biogeochemical processes in the hadal zone. Earth Science (in Chinese), 43(S2): 162–178
    Li Ting, Zhou Xianchun, Zhang Ying, et al. 2023. Underwater image enhancement based on IMSRCR and CLAHE-WGIF. Instrumentation, 10(2): 19–29
    Liu Rulong, Wang Li, Wei Yuli, et al. 2018. The hadal biosphere: recent insights and new directions. Deep-Sea Research Part II: Topical Studies in Oceanography, 155: 11–18, doi: 10.1016/j.dsr2.2017.04.015
    Liu Zhehao, Zhang Jianxing, Wang Bing, et al. 2023. Geomorphological characteristics and geological processes of Caroline M4 guyot. Oceanologia et Limnologia Sinica (in Chinese), 54(2): 351–361
    Ma Li, Zhao Liya, Wang Zixuan, et al. 2023. Detection and counting of small target apples under complicated environments by using improved YOLOv7-tiny. Agronomy, 13(5): 1419, doi: 10.3390/agronomy13051419
    Ottesen D, Dowdeswell J A, Bellec V K, et al. 2017. The geomorphic imprint of glacier surges into open-marine waters: examples from eastern Svalbard. Marine Geology, 392: 1–29, doi: 10.1016/j.margeo.2017.08.007
    Perez J A A, Kitazato H, Sumida P Y G, et al. 2018. Benthopelagic megafauna assemblages of the Rio Grande rise (SW Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 134: 1–11, doi: 10.1016/j.dsr.2018.03.001
    Pizer S M, Amburn E P, Austin J D, et al. 1987. Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3): 355–368
    Reinhard E, Adhikhmin M, Gooch B, et al. 2001. Color transfer between images. IEEE Computer Graphics and Applications, 21(5): 34–41
    Ren Shaoqing, He Kaiming, Girshick R, et al. 2017. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137–1149, doi: 10.1109/TPAMI.2016.2577031
    Schönberger J L, Frahm J M. 2016. Structure-from-motion revisited. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 4104–4113
    Usui A, Nishimura A, Iizasa K. 1993. Submersible observations of manganese nodule and crust deposits on the tenpo seamount, northwestern pacific. Marine Georesources & Geotechnology, 11(4): 263–291
    Usui A, Sato H, Nishi K, et al. 2013. Geological characterization of co-rich ferromaganese crusts over the northwestern pacific seamounts. In: Proceedings of 2013 OCEANS. San Diego: IEEE, 1–3, doi: 10.23919/OCEANS.2013.6741019
    Wang Fangjinhua, Galliani S, Vogel C, et al. 2021. PatchmatchNet: learned multi-view patchmatch stereo. In: Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 14189–14198
    Wang Chunzhi, Niu Hongxia. 2022. Sand-dust degraded image enhancement algorithm based on histogram equalization and MSRCR. Computer Engineering (in Chinese), 48(9): 223–229, doi: 10.19678/j.issn.1000-3428.0062764
    Xie Jun, Di Jianglei, Qin Yuwen. 2022. Application of deep learning in underwater imaging (invited). Acta Photonica Sinica (in Chinese), 51(11): 1101001, doi: 10.3788/gzxb20225111.1101001
    Yuan Yubin, Shen Yu, Peng Jing, et al. 2020. Defogging technology based on dual-channel sensor information fusion of near-infrared and visible light. Journal of Sensors, 2020(1): 8818650
    Zhang Jianxing, Song Yongdong, Luan Zhendong, et al. 2021. Analysis of the characteristics of submarine topography and distribution of sediments near Juehua Island, Liaodong Bay. Marine Sciences (in Chinese), 45(9): 40–47
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 录用日期:  2024-12-01
  • 网络出版日期:  2025-03-14

目录

    /

    返回文章
    返回