ZHUANG Yanpei, JIN Haiyan, LI Hongliang, CHEN Jianfang, WANG Bin, CHEN Fajin, BAI Youcheng, LU Yong, TIAN Shichao. Phytoplankton composition and its ecological effect in subsurface cold pool of the northern Bering Sea in summer as revealed by HPLC derived pigment signatures[J]. Acta Oceanologica Sinica, 2014, 33(6): 103-111. doi: 10.1007/s13131-014-0495-5
Citation: ZHUANG Yanpei, JIN Haiyan, LI Hongliang, CHEN Jianfang, WANG Bin, CHEN Fajin, BAI Youcheng, LU Yong, TIAN Shichao. Phytoplankton composition and its ecological effect in subsurface cold pool of the northern Bering Sea in summer as revealed by HPLC derived pigment signatures[J]. Acta Oceanologica Sinica, 2014, 33(6): 103-111. doi: 10.1007/s13131-014-0495-5

Phytoplankton composition and its ecological effect in subsurface cold pool of the northern Bering Sea in summer as revealed by HPLC derived pigment signatures

doi: 10.1007/s13131-014-0495-5
  • Received Date: 2013-03-08
  • Rev Recd Date: 2013-07-22
  • CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment was conducted to study phytoplankton community structure in the northern Bering Sea shelf, where a seasonal subsurface cold pool emerges. The results showed that fucoxanthin (Fuco) and chlorophyll a (Chl a) were the most abundant diagnostic pigments, with the integrated water column values ranging from 141 to 2 160 μg/m2 and 477 to 5 535 μg/m2, respectively. Moreover, a diatom bloom was identified at Sta. BB06 with the standing stock of Fuco up to 9 214 μg/m3. The results of CHEMTAX suggested that the phytoplankton community in the northern Bering Sea shelf was dominated by diatoms and chrysophytes with an average relative contribution to Chl a of 80% and 12%, respectively, followed by chlorophytes, dinoflagellates, and cryptophytes. Diatoms were the absolutely dominant algae in the subsurface cold pool with a relative contribution exceeding 90%, while the contribution of chrysophytes was generally higher in oligotrophic upper water. Additionally, the presence of a cold pool would tend to favor accumulation of diatom biomass and a bloom that occurred beneath the halocline would be beneficial to organic matter sinks, which suggests that a large part of the phytoplankton biomass would settle to the seabed and support a rich benthic biomass.
  • Arrigo K R, Robinson D H, Worthen D L, et al. 1999. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283(15): 365-367
    Burkill P, Edwards E, John A W G. 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Marine Biology, 93(3): 581-590
    Coupel P, Jin Haiyan, Joo M, et al. 2012. Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic. Biogeosciences, 9: 4835-4850
    Falkowski F G, Katz M E, Knoll A H, et al. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305: 354-360
    Furuya K, Hayashi M, Yabushita Y, et al. 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signature. Deep-Sea Research II, 50: 367-387
    Gao Shengquan, Chen Jianfang, Li Hongliang, et al. 2011. The distribution and structural conditions of nutrients in the Bering Sea in the summer of 2008. Acta Oceanologica Sinica (in Chinese), 33(2): 157-165
    Gao Zhongyong, Chen Liqi, Sun Heng, et al. 2012. Distributions and air-sea fluxes of carbon dioxide in the Western Arctic Ocean. Deep-Sea Research II, 81-84: 46-52
    Gao Guoping, Shi Maochong, Zhao Jinping, et al. 2002. Hydrologic features of the Bering Sea in the summer of 1999. Acta Oceanologica Sinica (in Chinese), 24(1): 8-16
    Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. Weinheim: Wiley-VCH, 193-198
    Grebmeier J M. 2011. Shifting patterns of life in the Pacific Arctic and Sub-arctic Seas. The Annual Review of Marine Science, 4: 63-78
    Grebmeier J M, McRoy C P, Feder H M. 1988. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas: I. Food supply source and benthic biomass. Marine Ecology Progress Series, 48: 57-67
    Grebmeier J M, Overland J E, Moore S E. 2006. A major ecosystem shift in the northern Bering Sea. Science, 311: 1461-1463
    He Jianfeng, Chen Bo, Zeng Yixin, et al. 2005. Biomass and distribution characteristics of bacteria and protozoa in the Bering Sea in summer. Acta Oceanologica Sinica (in Chinese), 27(4): 127-134
    Hunt Jr G L, Stabeno P, Walters G, et al. 2002. Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep-Sea Research Ⅱ, 49: 5821-5853
    Jeffrey S W, Mantoura R F C, Wright S W, et al. 1997. Phytoplankton Pigments in Oceanography. Paris: UNESCO Publishing
    Lovvorn J, Cooper L W, Brooks M L. 2005. Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. Marine Ecology Progress Series, 291: 135-150
    Mackey M D, Mackey D J, Higgins H W, et al. 1996. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144: 265-283
    Mackey D J, Higgins H W, Mackey M D, et al. 1998. Algal class abundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Research I, 45: 1441-1468
    Niebauer H J, Alexander V, Henrichs S M. 1995. A time-series study of the spring bloom at the Bering Sea ice edge: Ⅰ. Physical processes, chlorophyll and nutrient chemistry. Continental Shelf Research, 15(15): 1859-1877
    Saitoh S, Iida T, Sasaoka K. 2002. A description of temporal and spatial variability in the Bering Sea spring phytoplankton blooms (1997-1999) using satellite multi-sensor remote sensing. Progress in Oceanography, 55: 131-146
    Schandelmeier L, Alexander V. 1981. An analysis of the influence of ice on spring phytoplankton population structure in the Southeast Bering Sea. Limnology and Oceanography, 22(5): 935-943
    Schumacher J D, Aagaard K, Pease C H, et al. 1983. Effects of a shelf polynya on flow and water properties in the northern Bering Sea. Journal of Geophysical Research, 88: 2723-2732
    Stabeno P J, Schumacher J D, Ohtani K. 1999. Physical oceanography of the Bering Sea. In: Loughlin T R, Ohtani K, ed. The Bering Sea: a Summary of Physical, Chemical and Biological Characteristics and a Synopsis of Research. North Pacific Marine Science Organization. Alaska: Alaska Sea Grant Press, 1-28
    Stabeno P J, Bond N A, Kachel N B, et al. 2001. On the temporal variability of the physical environment over the south-eastern Bering Sea. Fisheries Oceanography, 10(1): 81-98
    State Bureau of Quality and Technical Supervision. 2007. GB/T 12763-2007 Specifications for Oceanographic Survey. Beijing: Standards Press of China
    Steele M, Ermold W, Zhang Jinlun. 2008. Arctic Ocean surface warming trends over the past 100 years. Geophysical Research Letters, 35: L02614
    Strom S L. 1993. Production of pheopigments by marine protozoa: Results of laboratory experiments analyzed by HPLC. Deep-Sea Research Part I, 40: 57-80
    Van Heukelem L, Thomas C S. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A, 910: 31-49
    Vernet M, Lorenzen C J. 1987. The relative abundance of pheophorbide a and pheophytin a in temperate marine waters. Limnology and Oceanography, 32(2): 352-358
    Walsh J J, McRoy C P, Coachman L K, et al. 1989. Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter affecting AOU demands of the Arctic Ocean. Progress in Oceanography, 22: 277-359
    Wang Xiaoyu, Zhao Jinping. 2011. Distribution and inter-annual variations of the cold water on the northern shelf of Bering Sea in summer. Acta Oceanologica Sinica, 33(2): 1-10
    Wright S W, Van den Enden R L. 2000. Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Research Ⅱ, 47: 2363-2400
    Zapata M, Jeffrey S W, Wright S W, et al. 2004. Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Marine Ecology Progress Series, 270: 83-102
    Zhuang Yanpei, Jin Haiyan, Chen Jianfang, et al. 2012. Distribution of photosynthetic pigments and its indication to phytoplankton community in warm pool of the western equatorial Pacific. Acta Oceanologica Sinica (in Chinese), 34(2): 143-151
  • Relative Articles

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-01010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.0 %FULLTEXT: 29.0 %META: 70.0 %META: 70.0 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 1.0 %其他: 1.0 %China: 67.3 %China: 67.3 %Japan: 1.0 %Japan: 1.0 %Russian Federation: 3.5 %Russian Federation: 3.5 %United States: 27.2 %United States: 27.2 %其他ChinaJapanRussian FederationUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1392) PDF downloads(1562) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return