ZHOU Shengqi, QU Ling, ZHAO Xiaozheng, WAN Wei. Laboratory simulation of the influence of geothermal heating on the interior ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 25-31. doi: 10.1007/s13131-014-0512-8
Citation: ZHOU Shengqi, QU Ling, ZHAO Xiaozheng, WAN Wei. Laboratory simulation of the influence of geothermal heating on the interior ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 25-31. doi: 10.1007/s13131-014-0512-8

Laboratory simulation of the influence of geothermal heating on the interior ocean

doi: 10.1007/s13131-014-0512-8
  • Received Date: 2013-04-05
  • Rev Recd Date: 2014-01-23
  • This study, using laboratory experiments and scaling analysis, evaluates the influence of geothermal heating on global oceanic circulation. Upon a well-developed large-scale convective flow, an additional heat flux perturbation δF/F is employed. The increments of flow and thermal properties, including eddy diffusivity KT, flow velocity V and bottom temperature Tb, are found to be independent of the applied heat flux F. Together with the scaling analysis of convective flow at different configurations, where the flow is thermally driven in the relatively low or extremely high turbulent thermal convections or the horizontal convection, the variances of flow properties, δKT/KT and δV/V, are found to be close to 0.5% and 0.75% at δF/F=2%. This means that the small heat flux perturbation plays a negligible role in the global convective flow. However, δTbT is found to be 1.5% at δF/F=2%, which would have a significant effect in the local region. The results might provide a clue to understanding the influence of geothermal heating on global oceanic circulation. It is expected that geothermal heating will contribute less than 1% in turbulent mixing and volume flux to global oceanic circulation, so its influence can be negligible in this situation. However, when it comes to the local environment, the influence of geothermal heating cannot be ignored. For example, temperature increases of about 0.5℃ with geothermal heating would have a significant effect on the physical environments within the benthic boundary layer.
  • loading
  • Adcroft A, Scott J R, Marotzke J. 2001. Impact of geothermal heating on the global ocean circulation. Geophysical Research Letters, 28: 1735-1738, doi: 10.1029/2000GL012182
    Adkins J F, Ingersoll A P, Pasquero C. 2005. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quaternary Science Reviews, 24: 581-594, doi: 10.1016/j.quascirev.2004.11.005
    Ahlers G, Grossmann S, Lohse D. 2009. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Reviews of Modern Physics, 81: 503-537, doi: 10.1103/RevModPhys.81.503
    Brown E, Nikolaenko A, Funfschilling D, et al. 2005. Heat transport in turbulent Rayleigh-Bénard convection: effect of finite topand bottom-plate conductivities. Physics of Fluids, 17: 075108, doi: 10.1063/1.1964987
    Emile-Geay J, Madec G. 2009. Geothermal heating, diapycnal mixing, and the abyssal circulation. Ocean Science, 5: 203-217, doi: 10.5194/os-5-203-2009
    Gade H G, Gustafsson K E. 2004. Application of classical thermodynamical principles to the study of the oceanic overturning circulation. Tellus: Series A. Dynamic Meteorology and Oceanography, 56: 371-386, doi: 10.1111/j.1600-0870.2004.00062.x
    Goldstein R J, Chiang H D, See D L. 1990. High-Rayleigh-number convection in a horizontal enclosure. Journal of Fluid Mechanics, 213: 111-126, doi: 10.1017/S0022112090002245
    Grossmann S, Lohse D. 2000. Scaling in thermal convection: a unifying theory. Journal of Fluid Mechanics, 407: 27-56, doi: 10.1017/S0022112099007545
    Hasterok D, Chapman D S, Davis E E. 2011. Oceanic heat flow: implications for global heat loss. Earth Planetary Science Letters, 311: 386-395, doi: 10.1016/j.epsl.2011.09.044
    Hofmann M, Maqueda Morales M A. 2009. Geothermal heat flux and its influence on the oceanic abyssal circulation and radiocarbon distribution. Geophysical Research Letters, 36: L03603, doi: 10.1029/2008GL036078
    Huang R X. 1999. Mixing and energetics of the oceanic thermohaline circulation. Journal of Physical Oceanography, 29: 727-746, doi:10.1175/1520-0485(1999)029<0727: MAEOTO>2.0.CO; 2 Hughes G O, Griffiths R W. 2008. Horizontal convection. Annual Review of Fluid Mechanics, 40: 185-208, doi:10.1146/annurev. fluid.40.111406.102148
    Houghton J T, Filho L G M, Harris B A, et al. 1996. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press Joyce T M, Warren B A, Talley L D. 1986. The geothermal heating of the abyssal subarctic Pacific Ocean. Deep Sea Research: Part A. Oceanographic Research Papers, 33: 1003-1015, doi: 10.1016/0198-0149(86)90026-9
    Kraichnan R H. 1962. Turbulent thermal convection at arbitrary Prandtl number. Physics of Fluids, 5: 1374, doi: 10.1063/1.1706533
    Lohse D, Xia Keqing. 2010. Small-scale properties of turbulent Rayleigh-Bénard convection. Annual Review of Fluid Mechanics, 42: 335-364, doi: 10.1146/annurev.fluid.010908.165152
    Macdonald A M, Wunsch C. 1996. An estimate of global ocean circulation and heat fluxes. Nature, 382: 436-439, doi:10.1038/382436a0 Malkus M V R. 1954. The heat transport and spectrum of thermal turbulence. Proceedings of the Royal Society of London: Series A, 225: 196-212, doi:10.1098/rspa.1954.0197
    Mullarney J C, Griffiths R W, Hughes G O. 2004. Convection driven by differential heating at a horizontal boundary. Journal of Fluid Mechanics, 516: 181-209, doi: 10.1017/S0022112004000485
    Mullarney J C, Griffiths R W, Hughes G O. 2006. The effects of geothermal heating on the ocean overturning circulation. Geophysical Research Letters, 33: L02607, doi: 10.1029/2005GL024956
    Munk W, Wunsch C. 1998. Abyssal recipes: II. Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45: 1977-2010, doi: 10.1016/S0967-0637(98)00070-3
    Nikolaenko A, Brown E, Funfschilling D, et al. 2005. Heat transport by turbulent Rayleigh-Bénard convection in cylindrical cells with aspect ratio one and less. Journal of Fluid Mechanics, 523: 251-260, doi: 10.1017/S0022112004002289
    Rossby H T. 1965. On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Research and Oceanographic Abstracts, 12: 9-16, doi: 10.1016/0011-7471(65)91336-7
    Sano M, Wu Xiaozhong, Libchaber A. 1989. Turbulence in helium-gas free-convection. Physical Review: A, 40: 6421-6430, doi: 10.1103/PhysRevA.40.6421
    Scott J R, Marotzke J, Adcroft A. 2001. Geothermal heating and its influence on the meridional overturning circulation. Journal of Geophysical Research, 106: 31141-31154, doi:10.1029/2000JC000532 Siggia E D. 1994. High Rayleigh number convection. Annual Review of Fluid Mechanics, 26: 137-168, doi:10.1146/annurev. fl.26.010194.001033
    Spiegel E A. 1971. Convection in stars I. Basic Boussinesq convection. Annual Review of Astronomy and Astrophysics, 9: 323-352, doi: 10.1146/annurev.aa.09.090171.001543
    Stein C, Stein S. 1994. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. Journal of Geophysical Research, 99: 3081-3095, doi: 10.1029/93JB02222
    Tailleux R, Rouleau L. 2010. The effect of mechanical stirring on horizontal convection. Tellus: A. Dynamic Meteorology and Oceanography, 62: 138-153, doi: 10.1111/j.1600-0870.2009.00426.x
    Urakawa L, Hasumi H. 2009. A remote effect of geothermal heat on the global thermohaline circulation. Journal of Geophysical Research, 114: C07016, doi: 10.1029/2008JC005192
    Wang Wei, Huang Ruixin. 2005. An experimental study on thermal convection driven by horizontal differential heating. Journal of Fluid Mechanics, 540: 49-73, doi: 10.1017/S002211200500577X
    Xia Keqing, Lam S, Zhou Shengqi. 2002. Heat-flux measurements in high-Prandtl-number Rayleigh-Bénard convection. Physical Review Letters, 88: 064501, doi: 10.1103/PhysRevLett.88.064501
    Xia Keqing, Sun Chao, Zhou Shengqi. 2003. Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Physical Review: E, 68: 066303, doi: 10.1103/Phys-RevE.68.066303
    Zhou Shengqi, Sun Chao, Xia Keqing. 2007. Measured oscillations of the velocity and temperature fields in turbulent Rayleigh-Bénard convection in a rectangular cell. Physical Review: E, 76: 036301, doi: 10.1103/PhysRevE.76.036301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1568) PDF downloads(1508) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return