DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 28-34. doi: 10.1007/s13131-016-0946-2
Citation: DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 28-34. doi: 10.1007/s13131-016-0946-2

Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data

doi: 10.1007/s13131-016-0946-2
  • Received Date: 2015-10-23
  • Rev Recd Date: 2016-05-31
  • Mesoscale eddies play a key role in the ocean dynamics of the Southern Ocean, and eddy response to the climate changes has also been widely noted. Both eddy kinetic energy (EKE) and eddy detection algorithm are used to study the eddy properties in the Pacific sector of the Southern Ocean. Consistent with previous works, the maps of the EKE illustrate that higher energy confines to the Antarctic Polar Frontal Zone (APFZ) and decreases progressively from west to east. It also shows that the most significant increase in the EKE occurs in the western and central parts of the Pacific sector, where the baroclinicity of the Antarctic Circumpolar Current (ACC) is much stronger. Statistical eddy properties reveal that both of the spatial pattern and interannual variation of the EKE are primarily due to the eddy amplitude and the eddy rotational speed, rather than the eddy number or the eddy radius. In general, these results furtherly confirm that anomalous westerly wind forcing associated with the positive Southern Annular Mode (SAM) index enhances the Southern Ocean eddy activity by strengthening the eddy properties.
  • 加载中
  • [1] Böning C W, Dispert A, Visbeck M, et al. 2008. The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12):864-869
    [2] Cai W, Shi G, Cowan T, et al. 2005. The response of the Southern Annular Mode, the East Australian Current, and the southern midlatitude ocean circulation to global warming. Geophysical Research Letters, 32:L23706
    [3] Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216
    [4] Cunningham S A, Alderson S G, King B A, et al. 2003. Transport and variability of the Antarctic Circumpolar Current in Drake Passage. Journal of Geophysical Research, 108(C5):8084
    [5] Duan Yongliang, Hou Yijun, Liu Hongwei, et al. 2012. Fronts, baroclinic transport, and mesoscale variability of the Antarctic Circumpolar Current in the southeast Indian Ocean. Acta Oceanologica Sinica, 31(6):1-11
    [6] Duan Yongliang, Hou Youjun, Liu Hongwei, et al. 2013. The water mass variability and southward shift of the Southern Hemisphere mid-depth supergyre. Acta Oceanologica Sinica, 32(11):74-81
    [7] Ducet N, Le Traon P Y, Reverdin G. 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. Journal of Geophysical Research, 105(C8):19477-19498
    [8] Farneti R, Delworth T L. 2010. The role of mesoscale eddies in the remote oceanic response to altered Southern Hemisphere winds. Journal of Physical Oceanography, 40(10):2348-2354
    [9] Farneti R, Delworth T L, Rosati A J, et al. 2010. The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. Journal of Physical Oceanography, 40(7):1539-1557
    [10] Fyfe J C, Saenko O A, Zickfeld K, et al. 2007. The role of poleward-intensifying winds on Southern Ocean warming. Journal of Climate, 20(21):5391-5400
    [11] Gille S T. 1999. Mass, heat, and salt transport in the southeastern Pacific:A Circumpolar Current inverse model. Journal of Geophysical Research, 104(C3):5191-5209
    [12] Gladyshev S, Arhan M, Sokov A, et al. 2008. A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep-Sea Research:Part I. Oceanographic Research Papers, 55(10):1284-1303
    [13] Hall A, Visbeck M. 2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. Journal of Climate, 15(21):3043-3057
    [14] Hallberg R, Gnanadesikan A. 2001. An exploration of the role of transient eddies in determining the transport of a zonally reentrant current. Journal of Physical Oceanography, 31(11):3312-3330
    [15] Hallberg R, Gnanadesikan A. 2006. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning:results from the modeling eddies in the Southern Ocean (MESO) project. Journal of Physical Oceanography, 36(12):2232-2252
    [16] Hogg A M C, Blundell J R. 2006. Interdecadal variability of the Southern Ocean. Journal of Physical Oceanography, 36(8):1626-1644
    [17] Hogg A M C, Meredith M P, Blundell J R, et al. 2008. Eddy heat flux in the Southern Ocean:response to variable wind forcing. Journal of Climate, 21(4):608-620
    [18] Hogg A M C, Meredith M P, Chambers D P, et al. 2015. Recent trends in the Southern Ocean eddy field. Journal of Geophysical Research, 120(1):257-267
    [19] Hughes C W. 1995. Rossby waves in the Southern Ocean:A comparison of Topex/Poseidon altimetry with model predictions. Journal of Geophysical Research, 100(C8):15933-15950
    [20] Hutchinson D K, Hogg A M C, Blundell J R. 2010. Southern Ocean response to relative velocity wind stress forcing. Journal of Physical Oceanography, 40(2):326-339
    [21] Kindson J W. 1986. Index cycles in the Southern Hemisphere during the global weather experiment. Monthly Weather Review, 114(9):1654-1663
    [22] Marshall D. 1995. Topographic steering of the Antarctic Circumpolar Current. Journal of Physical Oceanography, 25(7):1636-1650
    [23] Marshall G J. 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate, 16(24):4134-4143
    [24] Meredith M P, Hogg A M. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophysical Research Letters, 33:L16608
    [25] Morrow R, Coleman R, Church J, et al. 1994. Surface eddy momentum flux and velocity variances in the Southern Ocean from GeoSat altimetry. Journal of Physical Oceanography, 24(10):2050-2071
    [26] Morrow R, Ward M L, Hogg A M, et al. 2010. Eddy response to Southern Ocean climate modes. Journal of Geophysical Research:Oceans, 115(C10):C10030
    [27] Munday D R, Johnson H L, Marshall D P. 2013. Eddy saturation of equilibrated circumpolar currents. Journal of Physical Oceanography, 43(3):507-532
    [28] Orsi A H, Whitworth T, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research:Part I. Oceanographic Research Papers, 42(5):641-673
    [29] Qiu Bo, Chen Shuiming. 2004. Seasonal modulations in the eddy field of the South Pacific Ocean. Journal of Physical Oceanography, 34(7):1515-1527
    [30] Rintoul S R, Sokolov S. 2001. Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). Journal of Geophysical Research, 106(C2):2815-2832
    [31] Rintoul S R, England M H. 2002. Ekman transport dominates local air-sea fluxes in driving variability of Subantarctic Mode Water. Journal of Physical Oceanography, 32(5):1308-1321
    [32] Sallée J B, Morrow R, Speer K. 2008. Eddy heat diffusion and Subantarctic Mode Water formation. Geophysical Research Letters, 35(5):L05607
    [33] Sallée J B, Rintoul S R. 2011. Parameterization of eddy-induced subduction in the Southern Ocean surface-layer. Ocean Modelling, 39(1-2):146-153
    [34] Screen J A, Gillett N P, Stevens D P, et al. 2009. The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. Journal of Climate, 22(3):806-818
    [35] Sen Gupta A, England M H. 2006. Coupled ocean-atmosphere-ice response to variations in the Southern Annular Mode. Journal of Climate, 19(18):4457-4486
    [36] Sokolov S, Rintoul S R. 2009a. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts:1. Mean circumpolar paths. Journal of Geophysical Research, 114:C11018
    [37] Sokolov S, Rintoul S R. 2009b. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts:2. Variability and relationship to sea surface height. Journal of Geophysical Research, 114:C11019
    [38] Spence P, Fyfe J C, Montenegro A, et al. 2010. Southern Ocean response to strengthening winds in an eddy-permitting global climate model. Journal of Climate, 23(19):5332-5343
    [39] Sprintall J. 2003. Seasonal to interannual upper-ocean variability in the Drake Passage. Journal of Marine Research, 61(1):27-57
    [40] Thompson A F. 2008. The atmospheric ocean:eddies and jets in the Antarctic Circumpolar Current. Philosophical Transactions of the Royal Society A, 366(1885):4529-4541
    [41] Turner J, Colwell S R, Marshall G J, et al. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25(3):279-294
    [42] Wang Zhaomin, Kuhlbrodt T, Meredith M P. 2011. On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. Journal of Geophysical Research, 116:C08011
    [43] Wolff J O, Maier-Reimer E, Olbers D J. 1991. Wind-driven flow over topography in a zonal ß-plane channel:A quasi-geostrophic model of the Antarctic Circumpolar Current. Journal of Physical Oceanography, 21(2):236-264
    [44] Yang Xiaoyi, Wang Dongxiao, Wang Jia, et al. 2007. Connection between the decadal variability in the Southern Ocean circulation and the Southern Annular Mode. Geophysical Research Letters, 34:L16604
    [45] Yang Xiaoyi, Huang Ruixin, Wang Jia, et al. 2008. Delayed baroclinic response of the Antarctic Circumpolar Current to surface wind stress. Science in China Series D. Earth Sciences, 51(7):1036-1043
    [46] Zhang Huaimin, Reynolds R W, Bates J G. 2006. Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites:1987-present. 14th Conference on Satellite Meteorology and Oceanography, Atlanta, GA, American Meteorological Society, Paper 100004
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(874) PDF downloads(571) Cited by()

Related
Proportional views

Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data

doi: 10.1007/s13131-016-0946-2

Abstract: Mesoscale eddies play a key role in the ocean dynamics of the Southern Ocean, and eddy response to the climate changes has also been widely noted. Both eddy kinetic energy (EKE) and eddy detection algorithm are used to study the eddy properties in the Pacific sector of the Southern Ocean. Consistent with previous works, the maps of the EKE illustrate that higher energy confines to the Antarctic Polar Frontal Zone (APFZ) and decreases progressively from west to east. It also shows that the most significant increase in the EKE occurs in the western and central parts of the Pacific sector, where the baroclinicity of the Antarctic Circumpolar Current (ACC) is much stronger. Statistical eddy properties reveal that both of the spatial pattern and interannual variation of the EKE are primarily due to the eddy amplitude and the eddy rotational speed, rather than the eddy number or the eddy radius. In general, these results furtherly confirm that anomalous westerly wind forcing associated with the positive Southern Annular Mode (SAM) index enhances the Southern Ocean eddy activity by strengthening the eddy properties.

DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 28-34. doi: 10.1007/s13131-016-0946-2
Citation: DUAN Yongliang, LIU Hongwei, YU Weidong, HOU Yijun. Eddy properties in the Pacific sector of the Southern Ocean from satellite altimetry data[J]. Acta Oceanologica Sinica, 2016, 35(11): 28-34. doi: 10.1007/s13131-016-0946-2
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return