LIU Na, LIN Lina, WANG Yingjie, CHEN Hongxia, HE Yan. The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer[J]. Acta Oceanologica Sinica, 2016, 35(11): 59-67. doi: 10.1007/s13131-016-0948-0
Citation: LIU Na, LIN Lina, WANG Yingjie, CHEN Hongxia, HE Yan. The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer[J]. Acta Oceanologica Sinica, 2016, 35(11): 59-67. doi: 10.1007/s13131-016-0948-0

The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer

doi: 10.1007/s13131-016-0948-0
  • Received Date: 2015-09-30
  • Rev Recd Date: 2015-11-09
  • On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 2008, 2010, 2012 and 2014, the classification and interannual variation of water masses on the central Bering Sea shelf and the northern Bering Sea shelf are analyzed. The results indicate that there are both connection and difference between two regions in hydrological features. On the central Bering Sea shelf, there are mainly four types of water masses distribute orderly from the slope to the coast of Alaska:Bering Slope Current Water (BSCW), MW (Mixed Water), Bering Shelf Water (BSW) and Alaska Coastal Water (ACW). In summer, BSW can be divided into Bering Shelf Surface Water (BSW_S) and Bering Shelf Cold Water (BSW_C). On the northern Bering Sea shelf near the Bering Strait, it contains Anadyr Water (AW), BSW and ACW from west to east. But the spatial-temporal features are also remarkable in each region. On the central shelf, the BSCW is saltiest and occupies the west of 177°W, which has the highest salinity in 2014. The BSW_C is the coldest water mass and warmest in 2014; the ACW is freshest and mainly occupies the east of 170°W, which has the highest temperature and salinity in 2012. On the northern Bering Sea shelf near the Bering Strait, the AW is saltiest with temperature decreasing sharply compared with BSCW on the central shelf. In the process of moving northward to the Bering Strait, the AW demonstrates a trend of eastward expansion. The ACW is freshest but saltier than the ACW on the central shelf, which is usually located above the BSW and is saltiest in 2014. The BSW distributes between the AW and the ACW and coldest in 2012, but the cold water of the BSW_C on the central shelf, whose temperature less than 0℃, does not exist on the northern shelf. Although there are so many changes, the respond to a climate change is synchronized in the both regions, which can be divided into the warm years (2003 and 2014) and cold years (2008, 2010 and 2012). The year of 2014 may be a new beginning of warm period.
  • 加载中
  • [1] Aagaard K, Weingartner T J, Danielson S L, et al. 2006. Some controls on flow and salinity in Bering Strait. Geophysical Research Letters, 33(19):L19602
    [2] Amos A F, Coachman L K. 1992. Water mass modification from the Bering into the Chukchi Sea. In:Results of the Third Joint US USSR Bering & Chukchi Seas Expedition (BERPAC). Washington, DC, US. Fish and Wildlife Service, 27-35
    [3] Azumaya T, Ohtani K. 1995. Effect of winter meteorological conditions on the formation of the cold bottom water in the eastern Bering Sea shelf. Journal of Oceanography, 51(6):665-680
    [4] Baduini C L, Hyrenbach K D, Coyle K O, et al. 2001. Mass mortality of short-tailed shearwaters in the south-eastern Bering Sea during summer 1997. Fisheries Oceanography, 10(1):117-130
    [5] Clement J L, Maslowski W, Cooper L W, et al. 2005. Ocean circulation and exchanges through the northern Bering Sea 1979-2001 model results. Deep-Sea Research:Part Ⅱ. Topical Studies in Oceanography, 52(24-26):3509-3540
    [6] Coachman L K, Aagaard K, Tripp R B. 1975. Bering Strait:The Regional Physical Oceanography. Washington:University of Washington Press, 172
    [7] Danielson S, Aagaard K, Weingartner T, et al. 2006. The St. Lawrence polynya and the Bering shelf circulation:new observations and a model comparison. Journal of Geophysical Research:Oceans(1978-2012), 111(C9):C09023
    [8] Danielson S, Hedstrom K, Aagaard K, et al. 2012. Wind-induced reorganization of the Bering shelf circulation. Geophysical Research Letters, 39(8):L08601
    [9] Guy L S, Duffy-Anderson J, Matarese A C, et al. 2014. Understanding climate control of fisheries recruitment in the eastern Bering Sea:long-term measurements and process studies. Oceanography, 27(4):90-103
    [10] Horikawa K, Martin E E, Basak C, et al. 2015. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nature Communications, 6:7587
    [11] Hu Aixue, Meehl G A, Han Weiqing, et al. 2012. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences of the United States of America, 109(17):6417-6422
    [12] Hu Aixue, Meehl G A, Han Weiqing, et al. 2015. Effects of the Bering Strait closure on AMOC and global climate under different background climates. Progress in Oceanography, 132:174-196
    [13] Johnson G C, Stabeno P J, Riser S C. 2004. The Bering slope current system revisited. Journal of Physical Oceanography, 34(2):384-398
    [14] Kinder T H, Chapman D C, Whitehead Jr J A. 1986. Westward intensification of the mean circulation on the Bering Sea shelf. Journal of Physical Oceanography, 16(7):1217-1229
    [15] Kinney J C, Maslowski W, Okkonen S. 2009. On the processes controlling shelf-basin exchange and outer shelf dynamics in the Bering Sea. Deep-Sea Research:Part Ⅱ. Topical Studies in Oceanography, 56(17):1351-1362
    [16] Kovacs K M, Lydersen C, Overland J E, et al. 2011. Impacts of changing sea-ice conditions on arctic marine mammals. Marine Biodiversity, 41(1):181-194
    [17] Lauth R. 2010. Summer bottom and surface temperatures-Eastern Bering Sea. In:Boldt J, Zador S, eds. Ecosystem Considerations for 2010, Appendix C of the BSAI/GOA Stock Assessment and Fishery Evaluation Reports. Anchorage, AK:North Pacific Fishery Management Council, 53-54
    [18] Muench R D, Schumacher J D, Salo S A. 1988. Winter currents and hydrographic conditions on the northern central Bering Sea shelf. Journal of Geophysical Research:Oceans (1978-2012), 93(C1):516-526
    [19] Norcross B L, Holladay B A, Busby M S, et al. 2010. Demersal and larval fish assemblages in the Chukchi Sea. Deep-Sea Research:Part Ⅱ. Topical Studies in Oceanography, 57(1-2):57-70
    [20] Overland J E, Wang Muyin, Wood K R, et al. 2012. Recent Bering Sea warm and cold events in a 95-year context. Deep-Sea Research:Part Ⅱ. Topical Studies in Oceanography, 65-70:6-13
    [21] Piatt J F, Springer A M. 2003. Advection, pelagic food webs and the biogeography of seabirds in Beringia. Marine Ornithology, 31(2):141-154
    [22] Sapozhnikov V V, Ivanova O S, Mordasova N V. 2011. Identification of local upwelling zones in the Bering Sea using hydrochemical parameters. Oceanology, 51(2):247-254
    [23] Shi Jiuxin, Zhao Jinping, Jiao Yutian, et al. 2004. Pacific inflow and its links with abnormal variations in the Arctic Ocean. Chinese Journal of Polar Research (in Chinese), 16(3):253-260
    [24] Shuert P G, Walsh J J. 1993. A coupled physical-biological model of the Bering-Chukchi seas. Continental Shelf Research, 13(5-6):543-573
    [25] Stabeno P J, Kachel N B, Moore S E, et al. 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem. Deep-Sea Research Part Ⅱ. Topical Studies in Oceanography, 65-70:31-45
    [26] Stabeno P J, Reed R K, Napp J M. 2002. Transport through Unimak Pass, Alaska. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 49(26):5919-5930
    [27] Stevenson D E, Lauth R R. 2012. Latitudinal trends and temporal shifts in the catch composition of bottom trawls conducted on the eastern Bering Sea shelf. Deep-Sea Research:Part Ⅱ. Topical Studies in Oceanography, 65-70:251-259
    [28] Wang Xiaoyu, Zhao Jinping. 2011. Distribution and inter-annual variations of the cold water on the northern shelf of Bering Sea in summer. Haiyang Xuebao (in Chinese), 33(2):1-10
    [29] Wassman P, Duarte C M, Agustí S, et al. 2011. Footprints of climate change in the arctic marine ecosystem. Global Change Biology, 17(2):1235-1249
    [30] Weingartner T J, Danielson S L, Royer T C. 2005. Freshwater variability and predictability in the Alaska Coastal Current. Deep-Sea Research:Part Ⅱ. Topical Studies in Oceanography, 52(1-2):169-191
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1083) PDF downloads(432) Cited by()

Related
Proportional views

The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer

doi: 10.1007/s13131-016-0948-0

Abstract: On the basis of the CTD data obtained within the Bering Sea shelf by the Second to Sixth Chinese National Arctic Research Expedition in the summers of 2003, 2008, 2010, 2012 and 2014, the classification and interannual variation of water masses on the central Bering Sea shelf and the northern Bering Sea shelf are analyzed. The results indicate that there are both connection and difference between two regions in hydrological features. On the central Bering Sea shelf, there are mainly four types of water masses distribute orderly from the slope to the coast of Alaska:Bering Slope Current Water (BSCW), MW (Mixed Water), Bering Shelf Water (BSW) and Alaska Coastal Water (ACW). In summer, BSW can be divided into Bering Shelf Surface Water (BSW_S) and Bering Shelf Cold Water (BSW_C). On the northern Bering Sea shelf near the Bering Strait, it contains Anadyr Water (AW), BSW and ACW from west to east. But the spatial-temporal features are also remarkable in each region. On the central shelf, the BSCW is saltiest and occupies the west of 177°W, which has the highest salinity in 2014. The BSW_C is the coldest water mass and warmest in 2014; the ACW is freshest and mainly occupies the east of 170°W, which has the highest temperature and salinity in 2012. On the northern Bering Sea shelf near the Bering Strait, the AW is saltiest with temperature decreasing sharply compared with BSCW on the central shelf. In the process of moving northward to the Bering Strait, the AW demonstrates a trend of eastward expansion. The ACW is freshest but saltier than the ACW on the central shelf, which is usually located above the BSW and is saltiest in 2014. The BSW distributes between the AW and the ACW and coldest in 2012, but the cold water of the BSW_C on the central shelf, whose temperature less than 0℃, does not exist on the northern shelf. Although there are so many changes, the respond to a climate change is synchronized in the both regions, which can be divided into the warm years (2003 and 2014) and cold years (2008, 2010 and 2012). The year of 2014 may be a new beginning of warm period.

LIU Na, LIN Lina, WANG Yingjie, CHEN Hongxia, HE Yan. The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer[J]. Acta Oceanologica Sinica, 2016, 35(11): 59-67. doi: 10.1007/s13131-016-0948-0
Citation: LIU Na, LIN Lina, WANG Yingjie, CHEN Hongxia, HE Yan. The distribution and inter-annual variation of water masses on the Bering Sea shelf in summer[J]. Acta Oceanologica Sinica, 2016, 35(11): 59-67. doi: 10.1007/s13131-016-0948-0
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return