LIU Baoliang, JIA Rui, ZHAO Kuifeng, WANG Guowen, LEI Jilin, HUANG Bin. Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system[J]. Acta Oceanologica Sinica, 2017, 36(10): 31-38. doi: 10.1007/s13131-017-0976-4
Citation: LIU Baoliang, JIA Rui, ZHAO Kuifeng, WANG Guowen, LEI Jilin, HUANG Bin. Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system[J]. Acta Oceanologica Sinica, 2017, 36(10): 31-38. doi: 10.1007/s13131-017-0976-4

Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system

doi: 10.1007/s13131-017-0976-4
  • Received Date: 2016-05-24
  • Stocking density is widely recognized as a critical factor in aquaculture and a potential source of long-term stress. The influence of stocking density on growth and stress response of juvenile turbot (Scophthalmus maximus,~3-75 g, initial to final weight) was examined in fish held under low (LD,~0.21-5.31 kg/m2, initial to final density), medium (MD,~0.42-10.81 kg/m2) and high stocking density (HD,~0.63-14.27 kg/m2) for 120 days in a recirculating aquaculture system (RAS). In this trial, the growth curve for weight of juvenile turbot in RAS, all fitted by the Schnute model. No significant difference was found in growth performance among the three densities until at the final sampling (Day 120). The final weight and body weight increase (BWI) in the HD group were significantly lower than in other groups (P<0.05, weight:(75.83±2.49) g, (75.39±2.08) g, (65.72±2.86) g and BWI:(2 436.12±28.10)%, (2 421.29±4.64)%, (2 097.88±20.99)% in LD, MD and HD groups, respectively). Similarly, the specific growth rate (SGR), feed conversion ratio (FCR) and coefficient of variation for weight (CVw) were adversely affected by high stocking density (P<0.05). However, there was no difference in survival and Fulton's condition factor (K) of turbot among the different groups. Physiological analyses demonstrated a clear increase in the plasma cortisol level and an obvious decrease in growth hormone (GH) concentration in the HD group on Day 120 (P<0.05). There was no significant effect of stocking density on plasma glucose, Cl- and protein levels. All these findings would provide a reference for selecting the optimal stocking density of juvenile turbot in RAS.
  • 加载中
  • [1] AksungurN, AksungurM, AkbulutB. 2007. Effects of stocking density on growth performance, survival and food conversion ratio of turbot (Psetta maxima) in the net cages on the southeastern coast of the Black Sea. Turkish J Fish Aquat Sci, 7(2):147-152
    AubinJ, PapatryphonE, Van der WerfH M G. 2006. Characterisation of the environmental impact of a turbot (Scophthalmus maximus) re-circulating production system using Life Cycle Assessment. Aquaculture, 261(4):1259-1268
    BaerA, SchulzC, TraulsenI. 2011. Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models. Aquacult Int, 19(3):497-511
    BiswasG, GhoshalT K, NatarajanM. 2013. Effects of stocking density and presence or absence of soil base on growth, weight variation, survival and body composition of pearlspot, Etroplus suratensis (Bloch) fingerlings. Aquacult Res, 44(8):1266-1276
    BjörnssonB, SteinarssonA, OddgeirssonM. 2012. Optimal stocking density of juvenile Atlantic cod (Gadus morhua L.) reared in a land-based farm. Aquaculture, 356-357:342-350
    BolasinaS, TagawaM, YamashitaY. 2006. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture, 259(1-4):432-443
    BradfordM M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2):248-254
    BurrG S, WoltersW R, SchraderK K. 2012. Impact of depuration of earthy-musty off-flavors on fillet quality of Atlantic salmon, Salmo salar, cultured in a recirculating aquaculture system. Aquacult Eng, 50:28-36
    CostasB, AragãoC, DiasJ. 2013. Interactive effects of a high-quality protein diet and high stocking density on the stress response and some innate immune parameters of Senegalese sole Solea senegalensis. Fish Physiol Biochem, 39(5):1141-1151
    d'OrbcastelE R, Person-LeRuyet J, Le BayonN. 2009. Comparative growth and welfare in rainbow trout reared in recirculating and flow through rearing systems. Aquacult Eng, 40(2):79-86
    DevillerG, PalluelO, AliaumeC. 2005. Impact assessment of various rearing systems on fish health using multibiomarker response and metal accumulation. Ecotoxicol Environ Saf, 61(1):89-97
    Di MarcoP, PrioriA, FinoiaM G. 2008. Physiological responses of European sea bass Dicentrarchus labrax to different stocking densities and acute stress challenge. Aquaculture, 275(1-4):319-328
    DrennonK, MoriyamaS, KawauchiH. 2003. Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus):assessment of environmental salinity and GH secretogogues on plasma GH levels. Gen Comp Endocrinol, 133(3):314-322
    EllisT, NorthB, ScottA P. 2002. The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol, 61(3):493-531
    EllisT, YildizH Y, López-OlmedaJ. 2012. Cortisol and finfish welfare. Fish Physiol Biochem, 38(1):163-188
    FossA, KristensenT, ÅtlandÅ. 2006. Effects of water reuse and stocking density on water quality, blood physiology and growth rate of juvenile cod (Gadus morhua). Aquaculture, 256(1-4):255-263
    GarciaF, RomeraD M, GoziK S. 2013. Stocking density of Nile tilapia in cages placed in a hydroelectric reservoir. Aquaculture, 410-411:51-56
    HeinenJ M, HankinsJ A, WeberA L. 1996. A semiclosed recirculating-water system for high-density culture of rainbow trout. The Progressive Fish-Culturist, 58(1):11-22
    HitzfelderG M, HoltG J, FoxJ M. 2006. The effect of rearing density on growth and survival of cobia, Rachycentron canadum, larvae in a closed recirculating aquaculture system. J World Aquacult Soc, 37(2):204-209
    HwangH K, SonM H, MyeongJ I. 2014. Effects of stocking density on the cage culture of Korean rockfish (Sebastes schlegeli). Aquaculture, 434:303-306
    IrwinS, O'halloranJ, FitzGeraldR D. 1999. Stocking density, growth and growth variation in juvenile turbot, Scophthalmus maximus (Rafinesque). Aquaculture, 178(1-2):77-88
    Laiz-CarriónR, VianaI R, CejasJ R. 2012. Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L. Aquacult Int, 20(3):585-599
    LiuBaoliang, LiuYing, LiuZiyi. 2014. Influence of stocking density on growth, body composition and energy budget of Atlantic salmon Salmo salar L. in recirculating aquaculture systems. Chin J Oceanol Limnol, 32(5):982-990
    LiuBaoliang, LiuYing, WangXianping. 2015. The effect of stocking density on growth and seven physiological parameters with assessment of their potential as stress response indicators for the Atlantic salmon (Salmo salar). Marine and Freshwater Behaviour and Physiology, 48(3):177-192
    MansfieldG S, DesaiA R, NilsonS A. 2010. Characterization of rainbow trout (Oncorhynchus mykiss) intestinal microbiota and inflammatory marker gene expression in a recirculating aquaculture system. Aquaculture, 307(1-2):95-104
    McCormickS D. 2001. Endocrine control of osmoregulation in teleost fish. Am Zool, 41(4):781-794
    MenezesC, Ruiz-JaraboI, Martos-SitchaJ A. 2015. The influence of stocking density and food deprivation in silver catfish (Rhamdia quelen):a metabolic and endocrine approach. Aquaculture, 435:257-264
    MonteroD, IzquierdoM S, TortL. 1999. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem, 20(1):53-60
    NorthB P, TurnbullJ F, EllisT. 2006. The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture, 255(1-4):466-479
    Person-LeRuyet J, GallandR, LeRoux A. 1997. Chronic ammonia toxicity in juvenile turbot (Scophthalmus maximus). Aquaculture, 154(2):155-171
    PoxtonM G, AllouseS B. 1987. Cyclical fluctuations in ammonia and nitrite-nitrogen resulting from the feeding of turbot, Scophthalmus maximus (L.), in recirculating systems. Aquacult Eng, 6(4):301-322
    ResleyM J, WebbJr K A, HoltG J. 2006. Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture, 253(1-4):398-407
    RicheM A, WeirichC R, WillsP S. 2013. Stocking density effects on production characteristics and body composition of market size cobia, Rachycentron canadum, reared in recirculating aquaculture systems. J World Aquacult Soc, 44(2):259-266
    RodríguezL, BegtashiI, ZanuyS. 2000. Development and validation of an enzyme immunoassay for testosterone:effects of photoperiod on plasma testosterone levels and gonadal development in male sea bass (Dicentrarchus labrax, L.) at puberty. Fish Physiol Biochem, 23(2):141-150
    RowlandS J, MifsudC, NixonM. 2006. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aquaculture, 253(1-4):301-308
    SánchezP, AmbrosioP P, FlosR. 2013. Stocking density affects Senegalese sole (Solea senegalensis, Kaup) growth independently of size dispersion, evaluated using an individual photo-identification technique. Aquacult Res, 44(2):231-241
    Salas-LeitonE, AnguisV, Martín-AntonioB. 2010. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis):potential effects on the immune response. Fish Shellfish Immunol, 28(2):296-302
    SammouthS, d'OrbcastelE R, GassetE. 2009. The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system. Aquacult Eng, 40(2):72-78
    SkøttRasmussen R, KorsgaardB. 1996. The effect of external ammonia on growth and food utilization of juvenile turbot (Scophthalmus maximus L.). J Exp Mar Biol Ecol, 205(1-2):35-48
    SongXiefa, ChenYiming, PengLei. 2012. Effects of DO, ammonia and nitrite on growth and metabolism of juvenile turbot. Fishery Modernization (in Chinese), 39(6):33-39
    TolussiC E, HilsdorfA W S, CaneppeleD. 2010. The effects of stocking density in physiological parameters and growth of the endangered teleost species piabanha, Brycon insignis (Steindachner, 1877). Aquaculture, 310(1-2):221-228
    van RaaijM T M, PitD S S, BalmP H M. 1996. Behavioral strategy and the physiological stress response in rainbow trout exposed to severe hypoxia. Horm Behav, 30(1):85-92
    [2] WebbJr K A, HitzfelderG M, FaulkC K. 2007. Growth of juvenile cobia, Rachycentron canadum, at three different densities in a recirculating aquaculture system. Aquaculture, 264(1-4):223-227
    YiYang, LinC K. 2001. Effects of biomass of caged Nile tilapia (Oreochromis niloticus) and aeration on the growth and yields in an integrated cage-cum-pond system. Aquaculture, 195(3-4):253-267
    ZhuChenjian. 2006. Experiment of Seawater Analytical Chemistry (in Chinese),:40-63
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(923) PDF downloads(1036) Cited by()

Related
Proportional views

Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system

doi: 10.1007/s13131-017-0976-4

Abstract: Stocking density is widely recognized as a critical factor in aquaculture and a potential source of long-term stress. The influence of stocking density on growth and stress response of juvenile turbot (Scophthalmus maximus,~3-75 g, initial to final weight) was examined in fish held under low (LD,~0.21-5.31 kg/m2, initial to final density), medium (MD,~0.42-10.81 kg/m2) and high stocking density (HD,~0.63-14.27 kg/m2) for 120 days in a recirculating aquaculture system (RAS). In this trial, the growth curve for weight of juvenile turbot in RAS, all fitted by the Schnute model. No significant difference was found in growth performance among the three densities until at the final sampling (Day 120). The final weight and body weight increase (BWI) in the HD group were significantly lower than in other groups (P<0.05, weight:(75.83±2.49) g, (75.39±2.08) g, (65.72±2.86) g and BWI:(2 436.12±28.10)%, (2 421.29±4.64)%, (2 097.88±20.99)% in LD, MD and HD groups, respectively). Similarly, the specific growth rate (SGR), feed conversion ratio (FCR) and coefficient of variation for weight (CVw) were adversely affected by high stocking density (P<0.05). However, there was no difference in survival and Fulton's condition factor (K) of turbot among the different groups. Physiological analyses demonstrated a clear increase in the plasma cortisol level and an obvious decrease in growth hormone (GH) concentration in the HD group on Day 120 (P<0.05). There was no significant effect of stocking density on plasma glucose, Cl- and protein levels. All these findings would provide a reference for selecting the optimal stocking density of juvenile turbot in RAS.

LIU Baoliang, JIA Rui, ZHAO Kuifeng, WANG Guowen, LEI Jilin, HUANG Bin. Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system[J]. Acta Oceanologica Sinica, 2017, 36(10): 31-38. doi: 10.1007/s13131-017-0976-4
Citation: LIU Baoliang, JIA Rui, ZHAO Kuifeng, WANG Guowen, LEI Jilin, HUANG Bin. Stocking density effects on growth and stress response of juvenile turbot (Scophthalmus maximus) reared in land-based recirculating aquaculture system[J]. Acta Oceanologica Sinica, 2017, 36(10): 31-38. doi: 10.1007/s13131-017-0976-4
Reference (2)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return