GUAN Jiantao, WANG Weiji, HU Yulong, WANG Mosang, TIAN Tao, KONG Jie. Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches[J]. Acta Oceanologica Sinica, 2017, 36(6): 47-51. doi: 10.1007/s13131-017-1034-y
Citation: GUAN Jiantao, WANG Weiji, HU Yulong, WANG Mosang, TIAN Tao, KONG Jie. Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches[J]. Acta Oceanologica Sinica, 2017, 36(6): 47-51. doi: 10.1007/s13131-017-1034-y

Estimation of genetic parameters for growth trait of turbot using Bayesian and REML approaches

doi: 10.1007/s13131-017-1034-y
  • Received Date: 2015-05-21
  • Rev Recd Date: 2015-09-14
  • Bayesian and restricted maximum likelihood (REML) approaches were used to estimate the genetic parameters in a cultured turbot Scophthalmus maximus stock. The data set consisted of harvest body weight from 2 462 progenies (17 months old) from 28 families that were produced through artificial insemination using 39 parent fish. An animal model was applied to partition each weight value into a fixed effect, an additive genetic effect, and a residual effect. The average body weight of each family, which was measured at 110 days post-hatching, was considered as a covariate. For Bayesian analysis, heritability and breeding values were estimated using both the posterior mean and mode from the joint posterior conditional distribution. The results revealed that for additive genetic variance, the posterior mean estimate (σ2a=9320) was highest but with the smallest residual variance, REML estimates (σ2a=8088) came second and the posterior mode estimate (σ2a=7849) was lowest. The corresponding three heritability estimates followed the same trend as additive genetic variance and they were all high. The Pearson correlations between each pair of the three estimates of breeding values were all high, particularly that between the posterior mean and REML estimates (0.9969). These results reveal that the differences between Bayesian and REML methods in terms of estimation of heritability and breeding values were small. This study provides another feasible method of genetic parameter estimation in selective breeding programs of turbot.
  • loading
  • Ahlinder J, Sillanpää M J. 2013. Rapid Bayesian inference of heritability in animal models without convergence problems. Methods in Ecology and Evolution, 4(11):1037-1046
    Alijani S, Jasouri M, Pirany N, et al. 2012. Estimation of variance components for some production traits of Iranian Holstein dairy cattle using Bayesian and AI-REML methods. Pakistan Veterinary Journal, 32(4):562-566
    Cardellino R, Rovira J. 1987. Mejoramiento Genético Animal (in Spanish). Buenos Aires:Hemisferio Sur, 253
    de Magnabosco C U, Lôbo R B, Famula T R. 2000. Bayesian inference for genetic parameter estimation on growth traits for Nelore cattle in Brazil, using the Gibbs sampler. Journal of Animal Breeding and Genetics, 117(3):169-188
    de Villemereuil P, Gimenez O, Doligez B. 2013. Comparing parent-offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations:a simulation study for Gaussian and binary traits. Methods in Ecology and Evolution, 4(3):260-275
    Evans S, Langdon C. 2006. Direct and indirect responses to selection on individual body weight in the Pacific oyster (Crassostrea gigas). Aquaculture, 261(2):546-555
    Fishback A G, Danzmann R G, Ferguson M M, et al. 2002. Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture, 206(3-4):137-150
    Gara A B, Rekik B, Bouallègue M. 2006. Genetic parameters and evaluation of the Tunisian dairy cattle population for milk yield by Bayesian and BLUP analyses. Livestock Science, 100(3-4):142-149
    Geweke J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In:Bernardo J M, Berger J O, Dawid A P, et al., eds. Bayesian Statistics. Oxford:Oxford University Press, 169-193
    Gilks W R, Richardson S, Spiegelhalter D J. 1996. Markov Chain Monte Carlo in Practice. London:Chapman and Hall/CRC
    Gilmour A R, Gogel B J, Cullis B R, et al. 2009. ASReml User Guide Release 3.0. Hemel Hempstead, UK:VSN International Ltd
    Gjerde B, Røer J E, Lein I, et al. 1997. Heritability for body weight in farmed turbot. Aquaculture International, 5(2):175-178
    Hadfield J D. 2010. MCMC methods for multi-response generalized linear mixed models:the MCMCglmm R package. Journal of Statistical Software, 33(2):1-22
    Hadfield J. 2012. MCMCglmm CourseNotes. http://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf
    Henderson C R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics, 31(2):423-447
    Jensen J, Wang C S, Sorensen D A, et al. 1994. Bayesian inference on variance and covariance components for traits influenced by maternal and direct genetic effects, using the Gibbs sampler. Acta Agriculturae Scandinavica Section A-Animal Science, 44(4):193-201
    Kapell D N R G, Ashworth C J, Knap P W, et al. 2011. Genetic parameters for piglet survival, litter size and birth weight or its variation within litter in sire and dam lines using Bayesian analysis. Livestock Science, 135(2-3):215-224
    Kokate L S, Gowane G R, Dige M S, et al. 2011. Bayesian statistics:concepts and applications in animal breeding-a review. Journal of Advanced Veterinary Research, 1(2):94-98
    Lei Jilin. 2002. Some problems and suggestion on industrialized fish farming along the north coast of our country. Modern Fisheries Information (in Chinese), 17(4):5-8
    Lei Jilin, Liu Xinfu. 1995. A primary study on culture of turbot, Scophthalmus maximus L. Modern Fisheries Information (in Chinese), 10(11):1-3
    Lei Jilin, Ma Aijun, Chen Chao, et al. 2005. The present status and sustainable development of turbot (Scophthalmus maximus L.) culture in China. Engineering Science (in Chinese), 7(5):30-34
    Lei Jilin, Ma Aijun, Liu Xinfu, et al. 2003. Study on the development of embryo, larval and juvenile of turbot Scophthalmus maximus L. Oceanologia et Limnologia Sinica (in Chinese), 34(1):9-18
    Lin E C, Berger P J. 2001. Comparison of (co)variance component estimates in control populations of red flour beetle (Tribolium castaneum) using restricted maximum likelihood and Gibbs sampling. Journal of Animal Breeding & Genetics, 118(1):21-36
    Liu Baosuo, Zhang Tianshi, Kong Jie, et al. 2011. Estimation of genetic parameters for growth and upper thermal tolerance traits in turbot Scophthalmus maximus. Journal of Fisheries of China (in Chinese), 35(11):1601-1606
    Ma Aijun, Wang Xinan, Lei Jilin. 2009. Genetic parameterization for turbot Scophthalmus maximus:implication to breeding strategy. Oceanologia et Limnologia Sinica (in Chinese), 40(2):187-194
    Patterson H D, Thompson R. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3):545-554
    Piepho H P, Ogutu J O, Schulz-Streeck T, et al. 2012. Efficient computation of ridge-regression best linear unbiased prediction in genomic selection in plant breeding. Crop Science, 52(3):1093-1104
    Quinton C D, McMillan I, Glebe B D. 2005. Development of an Atlantic salmon (Salmo salar) genetic improvement program:genetic parameters of harvest body weight and carcass quality traits estimated with animal models. Aquaculture, 247(1-4):211-217
    R Core Team. 2013. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
    Riebler A, Held L, Stephan W. 2008. Bayesian variable selection for detecting adaptive genomic differences among populations. Genetics, 178(3):1817-1829
    Sae-Lim P, Komen H, Kause A, et al. 2013. Enhancing selective breeding for growth, slaughter traits and overall survival in rainbow trout (Oncorhynchus mykiss). Aquaculture, 372-375:89-96
    Schenkel F S, Schaeffer L R, Boettcher P J. 2002. Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information. Genetics Selection Evolution, 34(1):41-59
    Shikano T. 2007. Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild. Aquaculture Research, 38(12):1248-1253
    Sorensen D A, Andersen S, Gianola D, et al. 1995. Bayesian inference in threshold models using Gibbs sampling. Genetics Selection Evolution, 27(3):229-249
    van Tassell C P, Casella G, Pollak E J. 1995. Effects of selection on estimates of variance components using Gibbs sampling and restricted maximum likelihood. Journal of Dairy Science, 78(8):678-692
    Waldmann P, Ericsson T. 2006. Comparison of REML and Gibbs sampling estimates of multi-trait genetic parameters in Scots pine. Theoretical and Appllied Genetics, 112(8):1441-1451
    Walsh B. 2001. Quantitative genetics in the age of genomics. Theoretical Population Biology, 59(3):175-184
    Wang Hongxia, Chai Xueliang, Liu Baozhong. 2011. Estimation of genetic parameters for growth traits in cultured clam Meretrix meretrix (Bivalvia:Veneridae) using the Bayesian method based on Gibbs sampling. Aquaculture Research, 42(2):240-247
    Wang Xiaoxue, Ross K E, Saillant E, et al. 2006. Quantitative genetics and heritability of growth-related traits in hybrid striped bass (Morone chrysops ♀×Morone saxatilis ♂). Aquaculture, 261(2):535-545
    Wang C S, Rutledge J J, Gianola D. 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution, 26(2):91-115
    Zhang Qingwen, Kong Jie, Luan Sheng, et al. 2008. Estimation of genetic parameters for three economic traits in 25 d turbot fry. Marine Fisheries Research (in Chinese), 29(3):53-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (888) PDF downloads(280) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return