ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening[J]. Acta Oceanologica Sinica, 2018, 37(11): 53-60. doi: 10.1007/s13131-018-1146-z
Citation: ZHOU Zhiyuan, LIN Jian, ZHANG Fan. Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening[J]. Acta Oceanologica Sinica, 2018, 37(11): 53-60. doi: 10.1007/s13131-018-1146-z

Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches: implications for near-trench plate weakening

doi: 10.1007/s13131-018-1146-z
  • Received Date: 2018-03-29
  • The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench (3 km) and the largest at the Mariana Trench (4.9 km), and the average fault throw is the smallest at the Japan Trench (113 m) and the largest at the Tonga Trench (284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force (HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga, Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.
  • loading
  • Beavan J, Wang X, Holden C, et al. 2010. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009. Nature, 466(7309):959-963, doi: 10.1038/nature09292
    Behn M D, Ito G. 2008. Magmatic and tectonic extension at mid-ocean ridges:1. Controls on fault characteristics. Geochemistry, Geophysics, Geosystems, 9(8):Q08O10
    Buck W R, Lavier L L, Poliakov A N B. 2005. Modes of faulting at mid-ocean ridges. Nature, 434(7034):719-723, doi: 10.1038/nature03358
    Buck W R, Poliakov A N B. 1998. Abyssal hills formed by stretching oceanic lithosphere. Nature, 392(6673):272-275, doi: 10.1038/32636
    Christensen D H, Ruff L J. 1983. Outer-rise earthquakes and seismic coupling. Geophysical Research Letters, 10(8):697-700, doi: 10.1029/GL010i008p00697
    Cundall P A. 1989. Numerical experiments on localization in frictional materials. Ingenieur-archiv, 59(2):148-159, doi: 10.1007/BF00538368
    De Bremaecker J C. 1977. Is the oceanic lithosphere elastic or viscous? Journal of Geophysical Research, 82:2001-2004, doi: 10.1029/JB082i014p02001
    Emry E L, Wiens D A. 2015. Incoming plate faulting in the northern and western Pacific and implications for subduction zone water budgets. Earth and Planetary Science Letters, 414:176-186, doi: 10.1016/j.epsl.2014.12.042
    Faccenda M. 2014. Water in the slab:A trilogy. Tectonophysics, 614(3):1-30
    Garcia-Castellanos D, Torne M, Fernàndez M. 2000. Slab pull effects from a flexural analysis of the Tonga and Kermadec Trenches (Pacific plate). Geophysical Journal International, 141(2):479-484, doi: 10.1046/j.1365-246x.2000.00096.x
    Grevemeyer I, Kaul N, Diaz-Naveas J L, et al. 2005. Heat flow and bending-related faulting at subduction trenches:Case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236(1-2):238-248, doi: 10.1016/j.epsl.2005.04.048
    Grevemeyer I, Ranero C R, Flueh E R, et al. 2007. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth and Planetary Science Letters, 258(3-4):528-542, doi: 10.1016/j.epsl.2007.04.013
    Han Shuoshuo, Carbotte S M, Canales J P, et al. 2016. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench:New constraints on the distribution of faulting and evolution of the crust prior to subduction. Journal of Geophysical Research, 121(3):1849-1872
    Hilde T W C. 1983. Sediment subduction versus accretion around the pacific. Tectonophysics, 99(2-4):381-397, doi: 10.1016/0040-1951(83)90114-2
    Hunter J, Watts A B. 2016. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophysical Journal International, 207(1):288-316, doi: 10.1093/gji/ggw275
    Jaeger J C, Cook N G. 1979. Fundamentals of rock mechanics. London:Chapman and Hall, 513
    Kanamori H. 1971. Seismological evidence for a lithospheric normal faulting-the Sanriku earthquake of 1933. Physics of the Earth and Planetary Interiors, 4(4):289-300, doi: 10.1016/0031-9201(71)90013-6
    Kao H, Chen W P. 1996. Seismicity in the outer rise-forearc region and configuration of the subducting lithosphere with special reference to the Japan Trench. Journal of Geophysical Research:Solid Earth, 101(B12):27811-27831, doi: 10.1029/96JB01760
    Key K, Constable S, Matsuno T, et al. 2012. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench. Earth and Planetary Science Letters, 351:45-53
    Kobayashi K, Nakanishi M, Tamaki K, et al. 1998. Outer slope faulting associated with the western Kuril and Japan trenches. Geophysical Journal International, 134(2):356-372, doi: 10.1046/j.1365-246x.1998.00569.x
    Lavier L L, Buck W R, Poliakov A N B. 1999. Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology, 27(12):1127-1130, doi: 2.3.CO;2>10.1130/0091-7613(1999)027<1127:SCRHMF>2.3.CO;2
    Lavier L L, Buck W R, Poliakov A N B. 2000. Factors controlling normal fault offset in an ideal brittle layer. Journal of Geophysical Research:Solid Earth, 105(B10):23431-23442, doi: 10.1029/2000JB900108
    Lay T, Ammon C J, Kanamori H, et al. 2010. The 2009 Samoa-Tonga great earthquake triggered doublet. Nature, 466(7309):964-968, doi: 10.1038/nature09214
    Lefeldt M, Ranero C R, Grevemeyer I. 2012. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches. Geochemistry, Geophysics, Geosystems, 13(5):Q05013
    Masson D G. 1991. Fault patterns at outer trench walls. Marine Geophysical Researches, 13(3):209-225, doi: 10.1007/BF00369150
    Melosh H J. 1978. Dynamic support of the outer rise. Geophysical Research Letters, 5(5):321-324, doi: 10.1029/GL005i005p00321
    Naliboff J B, Billen M I, Gerya T, et al. 2013. Dynamics of outer rise faulting in oceanic-continental subduction systems. Geochemistry, Geophysics, Geosystems, 14(7):2310-2327, doi: 10.1002/ggge.20155
    Parsons B, Molnar P. 1976. The origin of outer topographic rises associated with trenches. Geophysical Journal International, 45(3):707-712, doi: 10.1111/j.1365-246X.1976.tb06919.x
    Poliakov A N B, Buck W R. 1998. Mechanics of stretching elastic-plastic-viscous layers:Applications to slow-spreading mid-ocean ridges. In:Buck W R, Delaney P T, Karson J A, et al, eds. Faulting and Magmatism at Mid-Ocean Ridges. Washington, D.C.:American Geophysical Union, 305-323
    Poliakov A N B, Cundall P A, Podladchikov Y Y, et al. 1993. An explicit inertial method for the simulation of viscoelastic flow:An evaluation of elastic effects on diapiric flow in two-and three-layers models. In:Stone D B, Runcorn S K, eds. Flow and Creep in the Solar System:Observations, Modeling and Theory. Dordrecht:Springer, 175-195
    Ranero C R, Morgan J P, McIntosh K, et al. 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956):367-373, doi: 10.1038/nature01961
    Ranero C, Sallares V. 2004. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile Trench. Geology, 32(7):549-552, doi: 10.1130/G20379.1
    Ranero C R, Villaseñor A, Morgan J P, et al. 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6(12):Q12002
    Ryan W B F, Carbotte S M, Coplan J O, et al. 2009. Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10(3):Q03014
    Supak S, Bohnenstiehl D R, Buck W R. 2006. Flexing is not stretching:An analogue study of flexure-induced fault populations. Earth and Planetary Science Letters, 246(1-2):125-137, doi: 10.1016/j.epsl.2006.03.028
    Tilmann F J, Grevemeyer I, Flueh E R, et al. 2008. Seismicity in the outer rise offshore southern Chile:Indication of fluid effects in crust and mantle. Earth and Planetary Science Letters, 269(1-2):41-55, doi: 10.1016/j.epsl.2008.01.044
    Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge:Cambridge University Press, 156-158
    Zhang Fan, Lin Jian, Zhan Wenhuan. 2014. Variations in oceanic plate bending along the Mariana Trench. Earth and Planetary Science Letters, 401:206-214, doi: 10.1016/j.epsl.2014.05.032
    Zhou Zhiyuan, Lin Jian. 2018. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench, Tectonophysics, 734-735, 59-68, doi: 10.1016/j.tecto.2018.04.008
    Zhou Zhiyuan, Lin Jian, Behn M D, et al. 2015. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophysical Research Letters, 42(11):4309-4317, doi: 10.1002/2015GL063917
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (815) PDF downloads(414) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return