LI Guihao, SU Lei, ZHANG Qianqian, ZHANG Xiaoli, GONG Jun. Molecular diversity and biogeography of benthic ciliates in the Bohai Sea and Yellow Sea[J]. Acta Oceanologica Sinica, 2019, 38(2): 78-86. doi: 10.1007/s13131-018-1236-y
Citation: LI Guihao, SU Lei, ZHANG Qianqian, ZHANG Xiaoli, GONG Jun. Molecular diversity and biogeography of benthic ciliates in the Bohai Sea and Yellow Sea[J]. Acta Oceanologica Sinica, 2019, 38(2): 78-86. doi: 10.1007/s13131-018-1236-y

Molecular diversity and biogeography of benthic ciliates in the Bohai Sea and Yellow Sea

doi: 10.1007/s13131-018-1236-y
  • Received Date: 2017-09-24
  • This study explored the molecular diversity and biogeography of benthic ciliates in Chinese marginal seas, the Bohai Sea (BHS), North Yellow Sea (NYS) and South Yellow Sea (SYS). From a previous 18S rRNA gene pyrosequencing dataset of the benthic microeukaryotes, we retrieved the sequences affiliated with phylum Ciliophora and analyzed alpha and beta diversities of ciliate communities. We found that BHS had the highest ciliate operational taxonomic unit (OTU) richness than NYS and SYS, whereas the richness was not significantly different between summer and winter. Among all the measured environmental variables, water depth showed consistently the strongest correlations with alpha diversities. Overall, the class Spirotrichea (mostly Choreotrichia and unassigned lineages within the class) dominated the communities in terms of both relative proportion of sequences (77.0%) and OTU richness (66.5%). OTU-level ciliate community structure was significant different among the three basins, but not between the seasons. Structurally, significant differences in relative proportion among the basins were detected for the class Litostomatea, but not for other classes. Partial Mantel tests demonstrated that water depth difference was more important than geographic and environment distances in shaping the community structure of benthic ciliates in the studied area. About 60% OTUs were not assigned at a class or order level and at least 45% OTUs shared a sequence similarity no more than 97% with the described species, indicating a great potential for ciliate species discovery in the offshore sediments. Compared with previous morphology-based surveys, the spatial pattern of ciliate diversity (decreasing from NYS to SYS) is also identified in the present study. Nevertheless, structurally, the dominant class appeared to be Spirotrichea in the sequencing dataset, which differs from previous morphology-based results (dominance of classes Prostomatea and Karyorelictea in biomass). The potential causes for the discrepancies between molecular and morphological findings are also discussed.
  • loading
  • Azovsky A I, Mazei Y A. 2005. Distribution and community structure of benthic ciliates in the North Eastern part of the Black Sea. Protistology, 4(2):83-90
    Caron D A, Countway P D. 2009. Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology, 57(3):227-238
    Chao C F, Tsai A Y, Ishikawa A, et al. 2013. Seasonal dynamics of ciliate cysts and the impact of short-term change of salinity in a eutrophic coastal marine ecosystem. Terrestrial, Atmospheric and Oceanic Sciences, 24(6):1051-1061
    Doherty M, Tamura M, Vriezen J A, et al. 2010. Diversity of oligotrichia and choreotrichia ciliates in coastal marine sediments and in overlying plankton. Applied and Environmental Microbiology, 76(12):3924-3935
    Dong Jun, Shi Fei, Li Han, et al. 2014. SSU rDNA sequence diversity and seasonally differentiated distribution of nanoplanktonic ciliates in neritic Bohai and Yellow Seas as revealed by T-RFLP. PLoS One, 9(7):e102640
    Fenchel T. 1969. The ecology of marine microbenthos:IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia, 6(1):1-182
    Fu Rao, Gong Jun. 2017. Single cell analysis linking ribosomal (r)DNA and rRNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. Journal of Eukaryotic Microbiology, 64(6):885-896, doi: 10.1111/jeu.12425
    Gao Feng, Huang Jie, Zhao Yan, et al. 2017. Systematic studies on ciliates (Alveolata, Ciliophora) in China:progress and achievements based on molecular information. European Journal of Protistology, 61:409-423, doi: 10.1016/j.ejop.2017.04.009
    Gao Feng, Warren A, Zhang Qianqian, et al. 2016. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Scientific Reports, 6:24874
    Gong Jun, Dong Jun, Liu Xihan, et al. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of Oligotrich and Peritrich ciliates. Protist, 164(3):369-379
    Gong Jun, Shi Fei, Ma Bin, et al. 2015. Depth shapes α-and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environmental Microbiology, 17(10):3722-3737
    Lynn D H. 2008. The Ciliated Protozoa:Characterization, Classification, and Guide to the Literature. 3rd ed. New York:Springer Science & Business Media, 99-104
    Martiny J B H, Bohannan B J M, Brown J H, et al. 2006. Microbial biogeography:putting microorganisms on the map. Nature Reviews Microbiology, 4(2):102-112
    Massana R, Gobet A, Audic S, et al. 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environmental Microbiology, 17(10):4035-4049
    Meng Zhaocui, Xu Kuidong, Dai Renhai, et al. 2012. Ciliate community structure, diversity and trophic role in offshore sediments from the Yellow Sea. European Journal of Protistology, 48(1):73-84
    Park S J, Park B J, Pham V H, et al. 2008. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea. Journal of Microbiology, 46(3):244-249
    Santoferrara L F, Bachy C, Alder V A, et al. 2016. Updating biodiversity studies in loricate protists:the case of the tintinnids (Alveolata, Ciliophora, Spirotrichea). Journal of Eukaryotic Microbiology, 63(5):651-656
    Song Weibo, Warren A, Hu Xiaozhong. 2009. Free-living Ciliates in the Bohai and Yellow Seas, China (in Chinese). Beijing:Science Press
    Song Weibo, Zhao Yuanjun, Xu Kuidong, et al. 2003. Pathogenic Protozoa in Mariculture (in Chinese). Beijing:Science Press, 483
    Stoecker D K, Capuzzo J M. 1990. Predation on protozoa:its importance to zooplankton. Journal of Plankton Research, 12(5):891-908
    Su Lei, Zhang Qianqian, Gong Jun. 2018. Development and evaluation of specific PCR primers targeting the ribosomal DNA-internal transcribed spacer (ITS) region of peritrich ciliates in environmental samples. Chinese Journal of Oceanology and Limnology:
    Tamura M, Katz L A, McManus G B. 2011. Distribution and diversity of oligotrich and choreotrich ciliates across an environmental gradient in a large temperate estuary. Aquatic Microbial Ecology, 64(1):51-67
    Wang Yaping, Guo Xiaohong, Zheng Pengfei, et al. 2017. Distinct seasonality of chytrid-dominated benthic fungal communities in the neritic oceans (Bohai Sea and North Yellow Sea). Fungal Ecology, 30:55-66
    Zhang Qianqian, Agatha S, Zhang Wuchang, et al. 2017. Three rDNA loci-based phylogenies of tintinnid ciliates (Ciliophora, Spirotrichea, Choreotrichida). Journal of Eukaryotic Microbiology, 64(2):226-241
    Zhao Feng, Xu Kuidong. 2016. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas. Deep Sea Research Part I:Oceanographic Research Papers, 116:22-32
    Zhou Bailing, Xu Kuidong. 2016. Spatiotemporal variation in community structure of marine benthic ciliates in the Yellow Sea during and after macroalgal and giant jellyfish blooms. Chinese Journal of Oceanology and Limnology, 34(4):629-641
    Zhu Ping, Wang Yaping, Shi Tiantian, et al. 2018. Genetic diversity of benthic microbial eukaryotes in response to spatial heterogeneity of sediment geochemistry in a mangrove ecosystem. Estuaries Coasts, 41(3):751-764, doi: 10.1007/s12237-017-0317-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (774) PDF downloads(314) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return