Sun Junchuan, Wei Zexun, Xu Tengfei, Sun Meng, Liu Kun, Yang Yongzeng, Chen Li, Zhao Hong, Yin Xunqiang, Feng Weizhong, Zhang Zhiyuan, Wang Yonggang. Development of a fine-resolution atmosphere-wave-ocean coupled forecasting model for the South China Sea and its adjacent seas[J]. Acta Oceanologica Sinica, 2019, 38(4): 154-166. doi: 10.1007/s13131-019-1419-1
Citation: Sun Junchuan, Wei Zexun, Xu Tengfei, Sun Meng, Liu Kun, Yang Yongzeng, Chen Li, Zhao Hong, Yin Xunqiang, Feng Weizhong, Zhang Zhiyuan, Wang Yonggang. Development of a fine-resolution atmosphere-wave-ocean coupled forecasting model for the South China Sea and its adjacent seas[J]. Acta Oceanologica Sinica, 2019, 38(4): 154-166. doi: 10.1007/s13131-019-1419-1

Development of a fine-resolution atmosphere-wave-ocean coupled forecasting model for the South China Sea and its adjacent seas

doi: 10.1007/s13131-019-1419-1
  • Received Date: 2018-03-23
  • A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and 99°E to 135°E in longitude including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and the Indonesian seas. To get precise initial conditions for the coupled forecasting model, the forecasting system conducts a 24-h hindcast simulation with data assimilation before forecasting. The Ensemble Adjustment Kalman Filter (EAKF) data assimilation method was adopted for the wave model MASNUM with assimilating Jason-2 significant wave height (SWH) data. The EAKF data assimilation method was also introduced to the ROMS model with assimilating sea surface temperature (SST), mean absolute dynamic topography (MADT) and Argo profiles data. To improve simulation of the structure of temperature and salinity, the vertical mixing scheme of the ocean model was improved by considering the surface wave induced vertical mixing and internal wave induced vertical mixing. The wave and current models were integrated from January 2014 to October 2015 driven by the ECMWF reanalysis 6 hourly mean dataset with data assimilation. Then the coupled atmosphere-wave-ocean forecasting system was carried out 14 months operational running since November 2015. The forecasting outputs include atmospheric forecast products, wave forecast products and ocean forecast products. A series of observation data are used to evaluate the coupled forecasting results, including the wind, SHW, ocean temperature and velocity. The forecasting results are in good agreement with observation data. The prediction practice for more than one year indicates that the coupled forecasting system performs stably and predict relatively accurate, which can support the shipping safety, the fisheries and the oil exploitation.
  • loading
  • Aldrian E, Sein D, Jacob D, et al. 2005. Modelling Indonesian rainfall with a coupled regional model. Climate Dynamics, 25(1):1-17, doi: 10.1007/s00382-004-0483-0
    Anderson J L. 2001. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12):2884-2903, doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
    Anderson J L. 2003. A local least squares framework for ensemble filtering. Monthly Weather Review, 131(4):634-642, doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2
    Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions:1. Model description and validation. Journal of Geophysical Research:Oceans, 104(C4):7649-7666, doi: 10.1029/98JC02622
    Boville B A, Gent P R. 1998. The NCAR climate system model, version one. Journal of Climate, 11(6):1115-1130, doi: 10.1175/1520-0442(1998)011<1115:TNCSMV>2.0.CO;2
    Bruneau N, Toumi R. 2016. A fully-coupled atmosphere-ocean-wave model of the Caspian Sea. Ocean Modelling, 107:97-111, doi: 10.1016/j.ocemod.2016.10.006
    Bryan K, Manabe S, Pacanowski R C. 1975. A global ocean-atmosphere climate model. Part Ⅱ. The oceanic circulation. Journal of Physical Oceanography, 5(1):30-46, doi: 10.1175/1520-0485(1975)005<0030:AGOACM>2.0.CO;2
    Carnes M R. 2009. Description and Evaluation of GDEM-V 3.0. NRL Rep, 2009:NRL/MR/7330-09-9165. Washington DC:Naval Research Lab Stennis Space Center
    Chassignet E P, Arango H, Dietrich D, et al. 2003. DAMEE-NAB:the base experiments. Dynamics of Atmospheres and Oceans, 32(3-4):155-183
    Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system:Part Ⅱ. Preliminary model validation. Monthly Weather Review, 129(4):587-604, doi: 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2
    Collins W D, Bitz C M, Blackmon M L, et al. 2006. The community climate system model version 3 (CCSM3). Journal of Climate, 19(11):2122-2143, doi: 10.1175/JCLI3761.1
    Diaz H F, Folland C K, Manabe T, et al. 2002. Workshop on advances in the use of historical marine climate data. World Meteorological Organization Bulletin, 51:377-380
    Döscher R, Willén U, Jones C, et al. 2002. The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environment Research, 7(3):183-192
    Dudhia J. 2004. The weather research and forecasting model (version 2.0). In:Proceedings of the 2nd International Workshop on Next Generation NWP Model. Seoul:Yonsei University, 19-23
    Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99(5):10143-10162
    Evensen G. 2003. The ensemble Kalman filter:Theoretical formulation and practical implementation. Ocean Dynamics, 53(4):343-367, doi: 10.1007/s10236-003-0036-9
    Gustafsson N, Nyberg L, Omstedt A. 1998. Coupling of a high-resolution atmospheric model and an ocean model for the Baltic Sea. Monthly Weather Review, 126(11):2822-2846, doi: 10.1175/1520-0493(1998)126<2822:COAHRA>2.0.CO;2
    Hagedorn R, Lehmann A, Jacob D. 2000. A coupled high resolution atmosphere-ocean model for the BALTEX region. Meteorologische Zeitschrift, 9(1):7-20, doi: 10.1127/metz/9/2000/7
    Haidvogel D B, Arango H, Budgell W P, et al. 2008. Ocean forecasting in terrain-following coordinates:Formulation and skill assessment of the Regional Ocean Modeling System. Journal of Computational Physics, 227(7):3595-3624, doi: 10.1016/j.jcp.2007.06.016
    Haidvogel D B, Arango H G, Hedstrom K, et al. 2002. Model evaluation experiments in the North Atlantic Basin:simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3-4):239-281
    Hasselmann K, Barnett T P, Bouws E, et al. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrographische Zeitschrift, A8(12):1-95
    Hodur R M. 1997. The Naval Research Laboratory's coupled ocean/atmosphere mesoscale prediction system (COAMPS). Monthly Weather Review, 125(7):1414-1430, doi: 10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2
    Hong Songyou, Pan Hualu. 1998. Convective trigger function for a mass-flux cumulus parameterization scheme. Monthly Weather Review, 126(10):2599-2620, doi: 10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2
    Hong S Y, Kim J H, Lim J O, et al. 2006. The WRF single moment microphysics scheme (WSM). Journal of the Korean Meteorological Society, 42:129-151
    Janjic Z I. 1996. The surface layer in the NCEP Eta model. In:Eleventh Conference on Numerical Weather Prediction. Norfolk:American Meteorological Society, 19-23
    Janjic Z I. 2002. Nonsingular implementation of the Mellor-Yamada level 2. 5 scheme in the NCEP Meso-scale model. NCEP Office Note, 437:61
    Kain J S. 2004. The Kain Fritsch convective parameterization:an update. Journal of Applied Meteorology, 43(1):170-181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35(23):L23615, doi: 10.1029/2008GL035520
    Manabe S, Bryan K. 1969. Climate calculations with a combined ocean-atmosphere model. Journal of the Atmospheric Sciences, 26(4):786-789, doi: 10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2
    Manabe S, Bryan K, Spelman M J. 1975. A global ocean-atmosphere climate model. Part I. The atmospheric circulation. Journal of Physical Oceanography, 5(1):3-29, doi: 10.1175/1520-0485(1975)005<0003:AGOACM>2.0.CO;2
    Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research:Atmospheres, 102(D14):16663-16682, doi: 10.1029/97JD00237
    Neelin J D, Latif M, Allaart M A F, et al. 1992. Tropical air-sea interaction in general circulation models. Climate Dynamics, 7(2):73-104, doi: 10.1007/BF00209610
    Qiao Fangli, Yuan Yeli, Ezer T, et al. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dynamics, 60(5):1339-1355, doi: 10.1007/s10236-010-0326-y
    Qiao Fangli, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixing in the upper ocean:Distribution and application to a global ocean circulation model. Geophysical Research Letters, 31(11):L11303
    Sasaki H, Kurihara K, Takayabu I, et al. 2006. Preliminary results from the coupled atmosphere-ocean regional climate model at the meteorological research institute. Journal of the Meteorological Society of Japan, 84(2):389-403, doi: 10.2151/jmsj.84.389
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347-404, doi: 10.1016/j.ocemod.2004.08.002
    Shchepetkin A F, McWilliams J C. 2009. Correction and commentary for "Ocean forecasting in terrain-following coordinates:Formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comp. Phys. 227, pp. 3595-3624. Journal of Computational Physics, 228(24):8985-9000, doi: 10.1016/j.jcp.2009.09.002
    Schrum C, Hübner U, Jacob D, et al. 2003. A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate Dynamics, 21(2):131-151, doi: 10.1007/s00382-003-0322-8
    Seo H, Miller A J, Roads J O. 2007. The Scripps Coupled Ocean-Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. Journal of Climate, 20(3):381-402, doi: 10.1175/JCLI4016.1
    Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A Description of the Advanced Research WRF Version 2. Available from NCAR; P O BOX 3000. Boulder, CO, Vol 88, 7-25
    Sun Meng, Yin Xunqiang, Yang Yongzeng. 2014. Construction and application in global wave data assimilation of static sample set. Oceanologia et Limnologia Sinica (in Chinese), 45(5):918-927
    Sun Meng, Yin Xunqiang, Yang Yongzeng, et al. 2017. An effective method based on dynamic sampling for data assimilation in a global wave model. Ocean Dynamics, 67(3-4):433-449
    Wang Guansuo, Qiao Fangli, Xia Changshui. 2010a. Parallelization of a coupled wave-circulation model and its application. Ocean Dynamics, 60(2):331-339, doi: 10.1007/s10236-010-0274-6
    Wang Yonggang, Qiao Fangli, Fang Guohong, et al. 2010b. Application of wave-induced vertical mixing to the K profile parameterization scheme. Journal of Geophysical Research:Oceans, 115(C9):C09014
    Warner J C, Armstrong B, He Ruoying, et al. 2010. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3):230-244, doi: 10.1016/j.ocemod.2010.07.010
    Warner J C, Sherwood C R, Signell R P, et al. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers & Geosciences, 34(10):1284-1306
    Washington W M, Semtner A J Jr, Meehl G A, et al. 2010. A general circulation experiment with a coupled atmosphere, ocean and sea ice model. Journal of Physical Oceanography, 10(12):1887-1908
    Yang Yongzeng, Qiao Fangli, Zhao Wei, et al. 2005. MASNUM ocean wave numerical model in spherical coordinates and its application. Haiyang Xuebao (in Chinese), 27(2):1-7
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2016. Three-dimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46(3):769-788, doi: 10.1175/JPO-D-14-0220.1
    Yin Xunqiang, Qiao Fangli, Yang Yongzeng, et al. 2010. An ensemble adjustment Kalman filter study for Argo data. Chinese Journal of Oceanology and Limnology, 28(3):626-635, doi: 10.1007/s00343-010-9017-2
    Yuan Yeli, Hua Feng, Pan Zengdi, et al. 1992. LAGFD-WAM numerical wave model-Ⅱ. Characteristics inlaid scheme and its application. Acta Oceanologica Sinica, 11(1):13-23
    Yuan Yeli, Pan Zengdi, Hua Feng, et al. 1991. LAGFD-WAM numerical wave model-I. basic physical model. Acta Oceanologica Sinica, 10(4):483-488
    Yuan Yeli, Tung C C, Huang N E. 1986. Statistical characteristics of breaking waves. In:Phillips O M, Hasselmann K, eds. Wave Dynamics and Radio Probing of the Ocean Surface. Boston, MA:Springer, 265-272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (763) PDF downloads(392) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return