Liu Xuehai, Pu Xinming, Luo Donglian, Lu Jing, Liu Zili. Model assessment of nutrient removal via planting Sesuvium portulacastrum in floating beds in eutrophic marine waters: the case of aquaculture areas of Dongshan Bay[J]. Acta Oceanologica Sinica, 2019, 38(12): 91-100. doi: 10.1007/s13131-019-1492-5
Citation: Liu Xuehai, Pu Xinming, Luo Donglian, Lu Jing, Liu Zili. Model assessment of nutrient removal via planting Sesuvium portulacastrum in floating beds in eutrophic marine waters: the case of aquaculture areas of Dongshan Bay[J]. Acta Oceanologica Sinica, 2019, 38(12): 91-100. doi: 10.1007/s13131-019-1492-5

Model assessment of nutrient removal via planting Sesuvium portulacastrum in floating beds in eutrophic marine waters: the case of aquaculture areas of Dongshan Bay

doi: 10.1007/s13131-019-1492-5
  • Received Date: 2018-12-21
  • Many coastal seas are severely eutrophic and required to reduce nutrient concentrations to meet a certain water quality standard. We proposed a method for nutrient removal by planting Sesuvium portulacastrum at the water surface using the floating beds in the aquaculture area of the Dongshan Bay as an example, which is an important net-cage culture base in China and where dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphate (DIP) reach 0.75 mg/L and 0.097 mg/L, respectively far exceeding China’s Grade IV water quality standards. Numerical simulations were taken using the ecological model, field observations and field plantation experimental results to assess the environmental restoration effects of planting S. portulacastrum at some certain spatial scales. Our field experiments suggested that the herbs can absorb 377 g/m2 nitrogen and 22.9 g/m2 phosphorus in eight months with an inserting density of ~60 shoot/m2. The numerical experiments show that the greater the plantation area is, the more nutrient removal. Plantation in ~12% of the study area could lower nutrients to the required Grade II standards, i.e., 0.2 mg/L < DIN≤0.3 mg/L and 0.015 mg/L < DIP≤0.03 mg/L. Here the phytoremediation method and results provide helpful references for environmental restoration in other eutrophic seas.
  • loading
  • Anderson T R, Gentleman W C, Sinha B. 2010. Influence of grazing formulations on the emergent properties of a complex ecosystem model in a global ocean general circulation model. Progress in Oceanography, 87(1-4):201-213, doi: 10.1016/j.pocean.2010.06.003
    Boxman S E, Nystrom M, Capodice J C, et al. 2017. Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquaculture Research, 48(5):2463-2477, doi: 10.1111/are.13083
    Chen Baohong, Ji Weidong, Zhou Kaiwen, et al. 2014. Nutrient and eutrophication characteristics of the Dongshan Bay, South China. Chinese Journal of Oceanology and Limnology, 32(4):886-898, doi: 10.1007/s00343-014-3214-3
    Dou Bixia, Huang Jianrong, Li Lianchun, et al. 2011. Research on effects of nutrient and phosphate removal from marine aquaculture system by Sesuvium portulacastrum. Journal of Hydroecology (in Chinese), 32(5):94-99
    Duarte C M, Borja A, Carstensen J, et al. 2015. Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries and Coasts, 38(4):1202-1212, doi: 10.1007/s12237-013-9750-9
    Dumbauld B R, Ruesink J L, Rumrill S S. 2009. The ecological role of bivalve shellfish aquaculture in the estuarine environment:a review with application to oyster and clam culture in West Coast (USA) estuaries. Aquaculture, 290(3-4):196-223, doi: 10.1016/j.aquaculture.2009.02.033
    Fan Wei, Li Wenjing, Fu Gui, et al. 2010. Sesuvium portulacastrum L., a promising halophyte in research and application. Journal of Tropical and Subtropical Botany (in Chinese), 18(6):689-695
    Forrest B M, Keeley N B, Hopkins G A, et al. 2009. Bivalve aquaculture in estuaries:Review and synthesis of oyster cultivation effects. Aquaculture, 298(1-2):1-15, doi: 10.1016/j.aquaculture.2009.09.032
    Fulford R S, Breitburg D L, Luckenbach M, et al. 2010. Evaluating ecosystem response to oyster restoration and nutrient load reduction with a multispecies bioenergetics model. Ecological Applications, 20(4):915-934, doi: 10.1890/08-1796.1
    Hu Haoguo, Wan Zenwen, Yuan Yeli. 2004. Simulation of seasonal variation of phytoplankton in the Southern Huanghai (Yellow) Sea and analysis on its influential factors. Haiyang Xuebao (in Chinese), 26(6):74-88
    Hu Haoguo, Wang Jia, Liu Hui, et al. 2016. Simulation of phytoplankton distribution and variation in the Bering-Chukchi Sea using a 3-D physical-biological model. Journal of Geophysical Research, 121(6):4041-4055
    Huang Lingfeng, Zhuo Jianfu, Guo Weidong, et al. 2013. Tracing organic matter removal in polluted coastal waters via floating bed phytoremediation. Marine Pollution Bulletin, 71(1-2):74-82, doi: 10.1016/j.marpolbul.2013.03.032
    Ibarra D A, Fennel K, Cullen J J. 2014. Coupling 3-D Eulerian bio-physics (ROMS) with individual-based shellfish ecophysiology (SHELL-E):a hybrid model for carrying capacity and environmental impacts of bivalve aquaculture. Ecological Modelling, 273:63-78, doi: 10.1016/j.ecolmodel.2013.10.024
    Islam S, Tanaka M. 2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management:a review and synthesis. Marine Pollution Bulletin, 48(7-8):624-649, doi: 10.1016/j.marpolbul.2003.12.004
    Jiang Long, Xia Meng, Ludsin S A, et al. 2015. Biophysical modeling assessment of the drivers for plankton dynamics in dreissenid-colonized western Lake Erie. Ecological Modelling, 308:18-33, doi: 10.1016/j.ecolmodel.2015.04.004
    Kanth S V, Preethi S, Keerthi B, et al. 2009. Studies on the use of Sesuvium portulacastrum-Part II:Preservation of skins. Journal of the American Leather Chemists Association, 104(1):25-32
    Li Chunqiang, Yu Xiaoling, Peng Ming. 2015a. The roles of polyculture with Eucheuma gelatinae and Gafrarium tumidum in purification of eutrophic seawater and control of algae bloom. Marine Pollution Bulletin, 101(2):750-757, doi: 10.1016/j.marpolbul.2015.10.001
    Li Keqiang, Zhang Li, Li Yan, et al. 2015b. A three-dimensional water quality model to evaluate the environmental capacity of nitrogen and phosphorus in Jiaozhou Bay, China. Marine Pollution Bulletin, 91(1):306-316, doi: 10.1016/j.marpolbul.2014.11.020
    Lin Yongqing, Wu Jiaxin, Zheng Xinqing, et al. 2011. Removal of suspended particulate matter in seawater by Sesuvium portulacastrum L. planted in floating-bed. Journal of Xiamen University (Natural Science) (in Chinese), 50(5):909-914
    Liu Xuehai, Li Ruixiang, Yuan Yeli. 2010. Numerical experiments of HAB inducement in Qingdao adjacent coastal area. Acta Oceanologica Sinica, 29(5):109-120, doi: 10.1007/s13131-010-0069-0
    Liu Xuehai, Wang Zongling, Zhang Mingliang, et al. 2015. Carrying capacity of manila clam Ruditapes philippinarum in Jiaozhou Bay estimated by an ecosystem model. Fisheries Science (in Chinese), 34(12):733-740
    Lokhande V H, Gor B K, Desai N S, et al. 2013. Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agronomy for Sustainable Development, 33(2):329-348, doi: 10.1007/s13593-012-0113-x
    Lonard R I, Judd F W. 1997. The biological flora of coastal dunes and wetlands. Sesuvium portulacastrum (L.) L. Journal of Coastal Research, 13(1):96-104
    Mellor G L. 2004. User's guide for a three-dimensional, primitive equation, numerical ocean model. Technical report, Program in Atmospheric and Oceanic Sciences. Princeton:Princeton University, 56
    MEP (Ministry of Environmental Protection of the People's Republic of China). 2004. GB 3097–1997 Marine water quality standard (in Chinese). Beijing:Standard Press of China, 15–16
    Mineur F, Arenas F, Assis J, et al. 2015. European seaweeds under pressure:consequences for communities and ecosystem functioning. Journal of Sea Research, 98:91-108, doi: 10.1016/j.seares.2014.11.004
    Neori A, Chopin T, Troell M, et al. 2004. Integrated aquaculture:rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231(1-4):361-391, doi: 10.1016/j.aquaculture.2003.11.015
    Radach G, Moll A. 1993. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea. Progress in Oceanography, 31(4):339-419, doi: 10.1016/0079-6611(93)90001-T
    Slama I, M'Rabet R, Ksouri R, et al. 2015. Water deficit stress applied only or combined with salinity affects physiological parameters and antioxidant capacity in Sesuvium portulacastrum. Flora-Morphology, Distribution, Functional Ecology of Plants, 213:69-76, doi: 10.1016/j.flora.2015.04.004
    Tang Kunxian, Jiao Nianzhi, You Xiuping, et al. 2005. Bioremediation of Gracilaria lichenoides in fish cage-farming areas. Journal of Fishery Sciences of China (in Chinese), 12(2):156-161
    Troost K. 2010. Causes and effects of a highly successful marine invasion:case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. Journal of Sea Research, 64(3):145-165, doi: 10.1016/j.seares.2010.02.004
    Wan Zenwen, Yuan Yeli, Wang Jia. 2001. PECOM Manual:A Physical-Biogeochemical Coupled Plankton Ecosystem Model. Technical report. Qingdao:First Institute of Oceanography, SOA
    Wang Xilong, Du Jinzhou, Ji Tao, et al. 2014. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay-a typical multi-species culture ecosystem in China. Marine Chemistry, 167:113-122, doi: 10.1016/j.marchem.2014.07.002
    Wang Guansuo, Zhao Chang, Xu Jiangling, et al. 2016. Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas. Acta Oceanologica Sinica, 35(2):19-28, doi: 10.1007/s13131-016-0810-4
    Wenzel B. 2016. Organizing coordination in fisheries and marine environmental management:Patterns of organizational change in Europe. Ocean & Coastal Management, 134:194-206
    Wild-Allen K, Skerratt J H, Whitehead J, et al. 2013. Mechanisms driving estuarine water quality:a 3D biogeochemical model for informed management. Estuarine, Coastal and Shelf Science, 135:33-45, doi: 10.1016/j.ecss.2013.04.009
    Wu Hailong, Huo Yuanzi, Han Fang, et al. 2015. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in Xiangshan Bay, China. Marine Pollution Bulletin, 91(1):272-279, doi: 10.1016/j.marpolbul.2014.11.032
    Wu Xiaojie, Shen Yuchun, Ye Ning, et al. 2011. The preliminary study of Sesuvium portulacastrum on the nitrogen and phosphorus absorption rate. Chinese Agricultural Science Bulletin (in Chinese), 27(20):92-96
    Xia Meng, Jiang Long. 2016. Application of an unstructured grid-based water quality model to Chesapeake Bay and its adjacent coastal ocean. Journal of Marine Science and Engineering, 4(3):52, doi: 10.3390/jmse4030052
    Zhao Chang, Yin Liping, Wang Guansuo, et al. 2018. The Modelling of Ulva prolifera transport in the Yellow Sea and its application. Oceanologia et Limnologia Sinica (in Chinese), 49(5):1075-1083
    Zheng Binxin, Li Jiufa, Liao Kangming, et al. 2013. Study on the characteristics of tidal and residual currents in the Dongshan Bay of Fujian. Advances in Marine Science (in Chinese), 31(2):188-195
    Zheng Binxin, Liao Kangming, Zeng Zhi, et al. 2009. Study on the characteristics of tidal current dynamic in Dongshan Bay. Journal of Oceanography in Taiwan Strait (in Chinese), 28(4):546-552
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (473) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return