Volume 39 Issue 3
Apr.  2020
Turn off MathJax
Article Contents
Xueyan Zhang, Haijin Dai, Jun Zhao, Heqing Yin. Sensitivity study of the wave-driven current in an Arctic frazil-pancake ice zone[J]. Acta Oceanologica Sinica, 2020, 39(3): 123-129. doi: 10.1007/s13131-020-1560-x
Citation: Xueyan Zhang, Haijin Dai, Jun Zhao, Heqing Yin. Sensitivity study of the wave-driven current in an Arctic frazil-pancake ice zone[J]. Acta Oceanologica Sinica, 2020, 39(3): 123-129. doi: 10.1007/s13131-020-1560-x

Sensitivity study of the wave-driven current in an Arctic frazil-pancake ice zone

doi: 10.1007/s13131-020-1560-x
Funds:  The National University of Defense Technology under contract No. ZK18-03-29.
More Information
  • Corresponding author: E-mail: hj_dai@nudt.edu.cn
  • Received Date: 2019-05-20
  • Accepted Date: 2019-06-25
  • Available Online: 2020-04-21
  • Publish Date: 2020-03-25
  • A coupled ocean-ice-wave model is used to study ice-edge jet and eddy genesis during surface gravity wave dissipation in a frazil-pancake ice zone. With observational data from the Beaufort Sea, possible wave dissipation processes are evaluated using sensitivity experiments. As wave energy dissipated, energy was transferred into ice floe through radiation stress. Later, energy was in turn transferred into current through ocean-ice interfacial stress. Since most of the wave energy is dissipated at the ice edge, ice-edge jets, which contained strong horizontal shear, appeared both in the ice zone and the ocean. Meanwhile, the wave propagation direction determines the velocity partition in the along-ice-edge and cross-ice-edge directions, which in turn determines the strength of the along-ice-edge jet and cross-ice-edge velocity. The momentum applied in the along-ice-edge (cross-ice-edge) direction increased (decreased) with larger incident angle, which is favorable condition for producing stronger mesoscale eddies, vice versa. The dissipation rate increases (decreases) with larger (smaller) wavenumber, which enhances (reduces) the jet strength and the strength of the mesoscale eddy. The strong along-ice-edge jet may extend to a deep layer (> 200 m). If the water depth is too shallow (e.g., 80 m), the jet may be largely dampened by bottom drag, and no visible mesoscale eddies are found. The results suggest that the bathymetry and incident wavenumber (magnitude and propagation direction) are important for wave-driven current and mesoscale eddy genesis.
  • loading
  • [1]
    Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37(9): 2228–2250. doi: 10.1175/JPO3101.1
    Cheng Sukun, Rogers W E, Thomson J, et al. 2017. Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone. Journal of Geophysical Research: Oceans, 122(11): 8770–8793. doi: 10.1002/2017JC013275
    Dai Haijin, Cui Jian, Yu Jingping. 2017. Revisiting mesoscale eddy genesis mechanism of nonlinear advection in a marginal ice zone. Acta Oceanologica Sinica, 36: 14–20
    Dai Haijin, McWilliams J C, Liang Junhong. 2019. Wave-driven mesoscale currents in a marginal ice zone. Ocean Modelling, 134: 1–17. doi: 10.1016/j.ocemod.2018.11.006
    Dumont D, Kohout A, Bertino L. 2011. A wave-based model for the marginal ice zone including a floe breaking parameterization. Journal of Geophysical Research: Oceans, 116(C4): C04001
    Gula J, Molemaker M J, McWilliams J C. 2015. Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophysical Research Letters, 42(10): 4054–4062. doi: 10.1002/2015GL063731
    Häkkinen S. 1986. Coupled ice-ocean dynamics in the marginal ice zones: upwelling/downwelling and eddy generation. Journal of Geophysical Research: Oceans, 91(C1): 819–832. doi: 10.1029/JC091iC01p00819
    Hibler W D III. 1979. A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4): 815–846. doi: 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
    Horvat C, Tziperman E, Campin J M. 2016. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophysical Research Letters, 43(15): 8083–8090. doi: 10.1002/2016GL069742
    Hwang B, Wilkinson J, Maksym T, et al. 2017. Winter-to-summer transition of Arctic sea ice breakup and floe size distribution in the Beaufort Sea. Elem Sci Anth, 5: 40. doi: 10.1525/elementa.232
    Johannessen J A, Johannessen O M, Svendsen E, et al. 1987a. Mesoscale eddies in the Fram Strait marginal ice zone during the 1983 and 1984 Marginal Ice Zone Experiments. Journal of Geophysical Research, 92(C7): 6754–6772. doi: 10.1029/JC092iC07p06754
    Johannessen O M, Johannessen J A, Svendsen E, et al. 1987b. Ice-edge eddies in the Fram Strait marginal ice zone. Science, 236(4800): 427–429. doi: 10.1126/science.236.4800.427
    Kohout A L, Williams M J M, Dean S M, et al. 2014. Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502): 604–607. doi: 10.1038/nature13262
    Lei Ruibo, Tian-Kunze X, Li Bingrui, et al. 2017. Characterization of summer Arctic sea ice morphology in the 135°-175°W sector using multi-scale methods. Cold Regions Science and Technology, 133: 108–120. doi: 10.1016/j.coldregions.2016.10.009
    Liu A K, Häkkinen S, Peng C Y. 1993. Wave effects on ocean-ice interaction in the marginal ice zone. Journal of Geophysical Research, 98(C6): 10025–10036. doi: 10.1029/93JC00653
    Manucharyan G E, Thompson A F. 2017. Submesoscale sea ice-ocean interactions in marginal ice zones. Journal of Geophysical Research: Oceans, 122(12): 9455–9475. doi: 10.1002/2017JC012895
    Manucharyan G E, Timmermans M L. 2013. Generation and separation of mesoscale eddies from surface ocean fronts. Journal of Physical Oceanography, 43(12): 2545–2562. doi: 10.1175/JPO-D-13-094.1
    Meylan M H, Bennetts L G, Kohout A L. 2014. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophysical Research Letters, 41(14): 5046–5051. doi: 10.1002/2014GL060809
    Rampal P, Bouillon S, Ólason E, et al. 2016. neXtSIM: a new Lagrangian sea ice model. The Cryosphere, 10(3): 1055–1073. doi: 10.5194/tc-10-1055-2016
    Røed L P, O’Brien J J. 1983. A coupled ice-ocean model of upwelling in the marginal ice zone. Journal of Geophysical Research, 88(C5): 2863–2872. doi: 10.1029/JC088iC05p02863
    Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404. doi: 10.1016/j.ocemod.2004.08.002
    Strong C, Rigor I G. 2013. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical Research Letters, 40(18): 4864–4868. doi: 10.1002/grl.50928
    Thomson J. 2015. ONR sea state DRI cruise report. Washington, DC: Office of Naval Research Sea State Initiative, Applied Physics Lab, University of Washington
    Uchiyama Y, McWilliams J C, Shchepetkin A F. 2010. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: Application to the surf zone. Ocean Modelling, 34(1–2): 16–35. doi: 10.1016/j.ocemod.2010.04.002
    Wadhams P, Aulicino G, Parmiggiani F, et al. 2018. Pancake ice thickness mapping in the Beaufort Sea from wave dispersion observed in SAR imagery. Journal of Geophysical Research: Oceans, 123(3): 2213–2237. doi: 10.1002/2017JC013003
    Wadhams P, Holt B. 1991. Waves in frazil and pancake ice and their detection in Seasat synthetic aperture radar imagery. Journal of Geophysical Research: Oceans, 96(C5): 8835–8852. doi: 10.1029/91JC00457
    Wang Yu, Holt B, Erick Rogers W, et al. 2016. Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014. Journal of Geophysical Research: Oceans, 121(2): 1502–1525. doi: 10.1002/2015JC011349
    Weber J E. 1987. Wave attenuation and wave drift in the marginal ice zone. Journal of Physical Oceanography, 17(12): 2351–2361. doi: 10.1175/1520-0485(1987)017<2351:WAAWDI>2.0.CO;2
    Williams T D, Bennetts L G, Squire V A, et al. 2013. Wave-ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Modelling, 71: 92–101
    Williams T D, Rampal P, Bouillon S. 2017. Wave-ice interactions in the neXtSIM sea-ice model. The Cryosphere, 11(5): 2117–2135. doi: 10.5194/tc-11-2117-2017
    Zhang Xueyan, Dai Haijin, Zhao Jun, et al. 2019. Generation mechanism of an observed submesoscale eddy in the Chukchi Sea. Deep Sea Research Part I: Oceanographic Research Papers, 148: 80–87. doi: 10.1016/j.dsr.2019.04.015
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (414) PDF downloads(47) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint