Volume 39 Issue 3
Apr.  2020
Turn off MathJax
Article Contents
Zenghong Liu, Jianping Xu, Jiancheng Yu. Real-time quality control of data from Sea-Wing underwater glider installed with Glider Payload CTD sensor[J]. Acta Oceanologica Sinica, 2020, 39(3): 130-140. doi: 10.1007/s13131-020-1564-6
Citation: Zenghong Liu, Jianping Xu, Jiancheng Yu. Real-time quality control of data from Sea-Wing underwater glider installed with Glider Payload CTD sensor[J]. Acta Oceanologica Sinica, 2020, 39(3): 130-140. doi: 10.1007/s13131-020-1564-6

Real-time quality control of data from Sea-Wing underwater glider installed with Glider Payload CTD sensor

doi: 10.1007/s13131-020-1564-6
Funds:  The National Natural Science Foundation under contract Nos 41621064, 41606003, U1709202 and U1811464; the National Key R&D Program of China under contract No. 2016YFC0301201; the China Association of Marine Affairs (“Study on the feasibility of establishing an international data sharing application platform for smart ocean”).
More Information
  • Corresponding author: E-mail: liuzenghong@139.com
  • Received Date: 2019-02-28
  • Accepted Date: 2019-06-03
  • Available Online: 2020-04-21
  • Publish Date: 2020-03-25
  • Profiles observed by Sea-Wing underwater gliders are widely applied in scientific research. However, the quality control (QC) of these data has received little attention. The mismatch between the temperature probe and conductivity cell response times generates erroneous salinities, especially across a strong thermocline. A sensor drift may occur owing to biofouling and biocide leakage into the conductivity cell when a glider has operated for several months. It is therefore critical to design a mature real-time QC procedure and develop a toolbox for the QC of Sea-Wing glider data. On the basis of temperature and salinity profiles observed by several Sea-Wing gliders each installed with a Sea-Bird Glider Payload CTD sensor, a real-time QC method including a thermal lag correction, Argo-equivalent real-time QC tests, and a simple post-processing procedure is proposed. The method can also be adopted for Petrel gliders.
  • loading
  • [1]
    Baird M E, Suthers I M, Griffin D A, et al. 2011. The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia. Deep Sea Research Part II: Topical Studies in Oceanography, 58(5): 592–605. doi: 10.1016/j.dsr2.2010.10.002
    Baltes B, Rudnick D, Crowley M, et al. 2014. Toward a U.S. IOOS® Underwater glider network plan: part of a comprehensive subsurface observing system. Technical Report U S IOOS
    Böhme L, Send U. 2005. Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep Sea Research Part II: Topical Studies in Oceanography, 52(3–4): 651–664. doi: 10.1016/j.dsr2.2004.12.014
    Bouffard J, Pascual A, Ruiz S, et al. 2010. Coastal and mesoscale dynamics characterization using altimetry and gliders: a case study in the Balearic sea. Journal of Geophysical Research: Oceans, 115(C10): C10029. doi: 10.1029/2009JC006087
    Bouffard J, Renault L, Ruiz S, et al. 2012. Sub-surface small-scale eddy dynamics from multi-sensor observations and modeling. Progress in Oceanography, 106: 62–79. doi: 10.1016/j.pocean.2012.06.007
    Dobricic S, Pinardi N, Testor P, et al. 2010. Impact of data assimilation of glider observations in the Ionian Sea (Eastern Mediterranean). Dynamics of Atmospheres and Oceans, 50(1): 78–92. doi: 10.1016/j.dynatmoce.2010.01.001
    Dong J L, Domingues R, Goni G, et al. 2017. Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts. Weather and Forecasting, 32(3): 1143–1159. doi: 10.1175/WAF-D-16-0182.1
    Gangopadhyay A, Schmidt A, Agel L, et al. 2013. Multiscale forecasting in the western North Atlantic: Sensitivity of model forecast skill to glider data assimilation. Continental Shelf Research, 63 Suppl: S159–S176
    Garau B, Ruiz S, Zhang W G, et al. 2011. Thermal lag correction on Slocum CTD glider data. Journal of Atmospheric and Oceanic Technology, 28(9): 1065–1071. doi: 10.1175/JTECH-D-10-05030.1
    Garcia H E, Boyer T, Baranova O K, et al. 2019. World Ocean Atlas 2018: Product Documentation. Silver Spring, Maryland: National Centers for Environmental Information, USA
    Liu Z H, Chen X R, Yu J C, et al. 2019. Kuroshio intrusion into the South China Sea with an anticyclonic eddy: Evidence from underwater glider observation. Journal of Oceanology and Limnology, doi: 10.1007/s00343-019-8290-y
    Liu F, Wang Y H, Wu Z L, et al. 2017. Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II. China Ocean Engineering, 31(1): 55–62. doi: 10.1007/s13344-017-0007-4
    Liu Y G, Weisberg R H, Lembke C. 2015. Glider salinity correction for unpumped CTD sensors across a sharp thermocline. In: Liu Y G, Kerkering H, Weisberg R H, eds. Coastal Ocean Observing Systems. Amsterdam: Elsevier, 305−325
    Liu Z H, Xu J P, Sun C H. 2007. Discussing on detecting and calibration method of Argo conductivity sensor drift errors. Ocean Technology (in Chinese), 26(4): 72–76
    Lueck R G, Picklo J J. 1990. Thermal inertia of conductivity cells: observations with a sea-bird cell. Journal of Atmospheric and Oceanic Technology, 7(5): 756–768. doi: 10.1175/1520-0426(1990)007<0756:TIOCCO>2.0.CO;2
    Miles T, Seroka G, Kohut J, et al. 2015. Glider observations and modeling of sediment transport in Hurricane Sandy. Journal of Geophysical Research: Oceans, 120(3): 1771–1791. doi: 10.1002/2014JC010474
    Morison J, Andersen R, Larson N, et al. 1994. The correction for thermal-lag effects in sea-bird CTD data. Journal of Atmospheric and Oceanic Technology, 11(4): 1151–1164. doi: 10.1175/1520-0426(1994)011<1151:TCFTLE>2.0.CO;2
    Oka E, Ando K. 2004. Stability of temperature and conductivity sensors of Argo profiling floats. Journal of Oceanography, 60(2): 253–258. doi: 10.1023/B:JOCE.0000038331.10108.79
    Owens W B, Wong A P S. 2009. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by θ-S climatology. Deep Sea Research Part I: Oceanographic Research Papers, 56(3): 450–457. doi: 10.1016/j.dsr.2008.09.008
    Pan C D, Yaremchuk M, Nechaev D, et al. 2011. Variational assimilation of glider data in Monterey Bay. Journal of Marine Research, 69(2–3): 331–346
    Pan C D, Zheng L Y, Weisberg R H, et al. 2014. Comparisons of different ensemble schemes for glider data assimilation on West Florida shelf. Ocean Modelling, 81: 13–24. doi: 10.1016/j.ocemod.2014.06.005
    Racape V, Dobler D, Coatanoan C. 2018. Tests RTQC. In: Proceedings of the 19th Meeting of the Argo Data Management Team. San Diego: The 19th Meeting of the Argo Data Managemen Team
    Rudnick D L, Davis R E, Eriksen C C, et al. 2004. Underwater gliders for ocean research. Marine Technology Society Journal, 38(2): 73–84. doi: 10.4031/002533204787522703
    Ruiz S, Pascual A, Garau B, et al. 2009. Mesoscale dynamics of the Balearic Front, integrating glider, ship and satellite data. Journal of Marine Systems, 78 (Suppl): S3–S16
    Shu Y Q, Wang Q, Zu T T. 2018. Progress on shelf and slope circulation in the northern South China Sea. Science China Earth Sciences, 61(5): 560–571. doi: 10.1007/s11430-017-9152-y
    Shu Y Q, Xiu P, Xue H J, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241
    Shulman I, Rowley C, Anderson S, et al. 2009. Impact of glider data assimilation on the Monterey Bay model. Deep Sea Research Part II: Topical Studies in Oceanography, 56(3–5): 188–198. doi: 10.1016/j.dsr2.2008.08.003
    Stommel H. 1989. The SLOCUM mission. Oceanography, 19(1): 22–25
    Tintoré J, Vizoso G, Casas B, et al. 2013. SOCIB: The Balearic Islands Coastal Ocean Observing and Forecasting System Responding to Science, Technology and Society Needs. Marine Technology Society Journal, 47(1): 101–117. doi: 10.4031/MTSJ.47.1.10
    Troupin C, Beltran J P, Heslop E, et al. 2015. A toolbox for glider data processing and management. Methods in Oceanography, 13–14: 13–23. doi: 10.1016/j.mio.2016.01.001
    UNESCO. 1981. Tenth report of the joint panel on oceanographic tables and standards. UNESCO technical papers in Marine Sciences, No. 36
    U S. Integrated Ocean Observing System. 2016. Manual for quality control of temperature and salinity data observations from gliders Version 1.0. https://cdn.ioos.noaa.gov/media/2017/12/Manual-for-QC-of-Glider-Data_05_09_16.pdf [2017-12-1/2018-8-16]
    Wong A P S, Johnson G C, Owens W B. 2003. Delayed-mode calibration of autonomous CTD profiling float salinity data by θ-S climatology. Journal of Atmospheric and Oceanic Technology, 20(2): 308–318. doi: 10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
    Wong A, Keeley R, Carval T, et al. 2019. Argo quality control manual for CTD and trajectory data. http://dx.doi.org/10.13155/33951 [2018-1-16/2018-8-14]
    Yu J C, Zhang A Q, Jin W M, et al. 2011. Development and experiments of the sea-wing underwater glider. China Ocean Engineering, 25(4): 721–736. doi: 10.1007/s13344-011-0058-x
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (434) PDF downloads(34) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint