Volume 39 Issue 3
Apr.  2020
Turn off MathJax
Article Contents
Xingrong Chen, Hui Wang, Fei Zheng, Qifa Cai. An ensemble-based SST nudging method proposed for correcting the subsurface temperature field in climate model[J]. Acta Oceanologica Sinica, 2020, 39(3): 73-80. doi: 10.1007/s13131-020-1568-2
Citation: Xingrong Chen, Hui Wang, Fei Zheng, Qifa Cai. An ensemble-based SST nudging method proposed for correcting the subsurface temperature field in climate model[J]. Acta Oceanologica Sinica, 2020, 39(3): 73-80. doi: 10.1007/s13131-020-1568-2

An ensemble-based SST nudging method proposed for correcting the subsurface temperature field in climate model

doi: 10.1007/s13131-020-1568-2
Funds:  The National Key R&D Program of China under contract No. 2017YFA0604201; the National Natural Science Foundation of China under contract Nos 41876012 and 41861144015.
More Information
  • Corresponding author: Email: zhengfei@mail.iap.ac.cn
  • Received Date: 2019-08-27
  • Accepted Date: 2019-11-08
  • Available Online: 2020-04-21
  • Publish Date: 2020-03-25
  • An ensemble-based assimilation method is proposed for correcting the subsurface temperature field when nudging the sea surface temperature (SST) observations into the Max Planck Institute (MPI) climate model, ECHAM5/MPI-OM. This method can project SST directly to subsurface according to model ensemble-based correlations between SST and subsurface temperature. Results from a 50 year (1960–2009) assimilation experiment show the method can improve the subsurface temperature field up to 300 m compared to the quality-controlled subsurface ocean temperature objective analyses (EN4), through reducing the biases of the thermal states, improving the thermocline structure, and reducing the root mean square (RMS) errors. Moreover, as most of the improvements concentrate over the upper 100 m, the ocean heat content in the upper 100 m (OHT_100 m) is further adopted as a property to validate the performance of the ensemble-based correction method. The results show that RMS errors of the global OHT_100 m convergent to one value after several times iteration, indicating this method can represent the relationship between SST and subsurface temperature fields well, and then improve the accuracy of the simulation in the subsurface temperature of the climate model.
  • loading
  • [1]
    Andreu-Burillo I, Holt R, Proctor J D, et al. 2007. Assimilation of sea surface temperature in the POL coastal ocean modelling system. Journal of Marine Systems, 65(1–4): 27–40. doi: 10.1016/j.jmarsys.2005.09.017
    Annan J D, Hargreaves J C. 1999. Sea surface temperature assimilation for a three-dimensional baroclinic model of shelf seas. Continental Shelf Research, 19(11): 1507–1520. doi: 10.1016/S0278-4343(99)00033-3
    Chen Dake, Zebiak S E, Cane M A. 1997. Initialization and predictability of a coupled ENSO forecast model. Monthly Weather Review, 125(5): 773–788. doi: 10.1175/1520-0493(1997)125<0773:IAPOAC>2.0.CO;2
    Ezer T, Mellor G L. 1997. Data assimilation experiments in the Gulf Stream region: how useful are satellite-derived surface data for nowcasting the subsurface fields?. Journal of Atmospheric and Oceanic Technology, 14(6): 1379–1391. doi: 10.1175/1520-0426(1997)014<1379:DAEITG>2.0.CO;2
    Good S A, Martin M J, Rayner N A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716. doi: 10.1002/2013JC009067
    Haugen V E J, Evensen G. 2002. Assimilation of SLA and SST data into an OGCM for the Indian Ocean. Ocean Dynamics, 52(3): 133–151. doi: 10.1007/s10236-002-0014-7
    Ji M, Leetmaa A. 1997. Impact of data assimilation on ocean initialization and El Niño prediction. Monthly Weather Review, 125(5): 742–753. doi: 10.1175/1520-0493(1997)125<0742:IODAOO>2.0.CO;2
    Jungclaus J H, Keenlyside N, Botzet M, et al. 2006. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate, 19(16): 3952–3972. doi: 10.1175/JCLI3827.1
    Keenlyside N S, Latif M, Botzet M, et al. 2005. A coupled method for initializing El Niño Southern Oscillation forecasts using sea surface temperature. Tellus, 57A: 340–356
    Keenlyside N S, Latif M, Jungclaus J, et al. 2008. Advancing decadal-scale climate prediction in the north atlantic sector. Nature, 453(7191): 84–88. doi: 10.1038/nature06921
    Kelley J G W, Behringer D W, Thiebaux H J, et al. 2002. Assimilation of SST data into a real-time coastal ocean forecast system for the U. S. East Coast. Weather and Forecasting, 17(4): 670–690. doi: 10.1175/1520-0434(2002)017<0670:AOSDIA>2.0.CO;2
    Kleeman R, Moore A M, Smith N R. 1995. Assimilation of subsurface thermal data into a simple ocean model for the initialization of an intermediate tropical coupled ocean-atmosphere forecast model. Monthly Weather Review, 123(10): 3103–3114. doi: 10.1175/1520-0493(1995)123<3103:AOSTDI>2.0.CO;2
    Marsland S J, Haak H, Jungclaus J H, et al. 2003. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5(2): 91–127. doi: 10.1016/S1463-5003(02)00015-X
    Neelin J D, Battisti D S, Hirst A C, et al. 1998. ENSO theory. Journal of Geophysical Research, 103(C7): 14261–14290. doi: 10.1029/97JC03424
    Rosati A, Miyakoda K, Gudgel R. 1997. The impact of ocean initial conditions on ENSO forecasting with a coupled model. Monthly Weather Review, 125(5): 754–772. doi: 10.1175/1520-0493(1997)125<0754:TIOOIC>2.0.CO;2
    Shu Yeqiang, Zhu Jiang, Wang Dongxiao, et al. 2009. Performance of four sea surface temperature assimilation schemes in the South China Sea. Continental Shelf Research, 29(11–12): 1489–1501. doi: 10.1016/j.csr.2009.03.016
    Song Zhengya, Shu Qi, Bao Ying, et al. 2015. The prediction on the 2015/16 El Niño event from the perspective of FIO-ESM. Acta Oceanologica Sinica, 34(12): 67–71. doi: 10.1007/s13131-015-0787-4
    Syu H H, Neelin J D. 2000. ENSO in a hybrid coupled model: Part II.prediction with piggyback data assimilation. Climate Dynamics, 16(1): 35–48
    Tang Youmin, Hsieh W W. 2003. ENSO simulation and prediction in a hybrid coupled model with data assimilation. Journal of the Meteorological Society of Japan, 81(1): 1–19. doi: 10.2151/jmsj.81.1
    Tang Youmin, Kleeman R, Moore A M. 2004. SST assimilation experiments in a tropical Pacific Ocean model. Journal of Physical Oceanography, 34(3): 623–642. doi: 10.1175/3518.1
    Twigt D J, De Goede E D, Schrama E J O, et al. 2007. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing. Ocean Dynamics, 57(4–5): 467–484. doi: 10.1007/s10236-007-0123-4
    Valcke S, Caubel A, Declat D, et al. 2003. OASIS3 ocean atmosphere sea ice soil. Users guide. Prisim Project Report 2. Toulouse, France: CERFACS
    Wolff J O, Maier-Reimer E, Legutke S. 1997. The Hamburg Ocean primitive equation model HOPE. Technical Report 13. Hamburg, Germany: German Climate Computer Center (DKRZ)
    Zheng Fei, Zhu Jiang, Zhang Ronghua, et al. 2006. Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophysical Research Letters, 33(19): L19604. doi: 10.1029/2006GL026994
    Zheng Fei, Zhu Jiang, Zhang Ronghua. 2007. Impact of altimetry data on ENSO ensemble initializations and predictions. Geophysical Research Letters, 34(13): L13611. doi: 10.1029/2007GL030451
    Zheng Fei, Zhu Jiang. 2008. Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. Journal of Geophysical Research: Oceans, 113(C7): C07002. doi: 10.1029/2007JC004621
    Zheng Fei. 2014. ENSO variability simulated by a coupled general circulation Model: ECHAM5/MPI-OM. Atmospheric and Oceanic Science Letters, 7(5): 471–475. doi: 10.1080/16742834.2014.11447209
    Zheng Fei, Zhu Jiang. 2015. Roles of initial ocean surface and subsurface states on successfully predicting 2006-2007 El Niño with an intermediate coupled model. Ocean Science, 11: 187–194. doi: 10.5194/os-11-187-2015
    Zhu Jiang, Wang Hui, Zhou Guangqing. 2002. SST data assimilation experiments using an adaptive variational method. Chinese Science Bulletin, 47(23): 2010–2013. doi: 10.1360/02tb9436
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (312) PDF downloads(30) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint