Volume 39 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Chunhua Qiu, Juan Ouyang, Jiancheng Yu, Huabin Mao, Yongfeng Qi, Jiaxue Wu, Danyi Su. Variations of mesoscale eddy SST fronts based on an automatic detection method in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 82-90. doi: 10.1007/s13131-020-1669-y
Citation: Chunhua Qiu, Juan Ouyang, Jiancheng Yu, Huabin Mao, Yongfeng Qi, Jiaxue Wu, Danyi Su. Variations of mesoscale eddy SST fronts based on an automatic detection method in the northern South China Sea[J]. Acta Oceanologica Sinica, 2020, 39(11): 82-90. doi: 10.1007/s13131-020-1669-y

Variations of mesoscale eddy SST fronts based on an automatic detection method in the northern South China Sea

doi: 10.1007/s13131-020-1669-y
Funds:  The National Natural Science Foundation of China under contract No. 41976002.
More Information
  • SST fronts at the mesoscale eddy edge (ME fronts) were investigated from 2007–2017 in the northern South China Sea (NSCS) based on an automatic method using satellite sea level anomaly (SLA) and SST data. The relative probabilities between the number of anticyclonic/cyclonic ME fronts (AEF/CEF) and the number of anticyclones/cyclones reached 20%. The northeastern and southwestern parts of these anticyclones had more fronts than the northwestern and southeastern parts, although CEFs were nearly equally distributed in all directions. The number of ME fronts had remarkable seasonal variations, while the eddy kinetic energy (EKE) showed no seasonal variations. The total EKE at the ME fronts was three times of that within the MEs, and it was much stronger in AEFs than in CEFs. The interannual variability in the number of ME fronts and EKE had no significant correlation with the El Niño-Southern Oscillation (ENSO) index. Possible mechanisms of ME fronts were discussed, but the contributions of mesoscale eddies to SST fronts need to be quantified in future studies.
  • loading
  • [1]
    Brannigan L. 2016. Intense submesoscale upwelling in anticyclonic eddies. Geophysical Research Letters, 43(7): 3360–3369. doi: 10.1002/2016GL067926
    [2]
    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43. doi: 10.1175/2007JPO3671.1
    [3]
    Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119
    [4]
    Chen Gengxin, Hou Yijun, Chu Xiaoqing, et al. 2009. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data. Chinese Journal of Oceanology and Limnology, 27(4): 943–954. doi: 10.1007/s00343-009-9297-6
    [5]
    Cheng Xuhua, Qi Yiquan. 2010. Variations of eddy kinetic energy in the South China Sea. Journal of Oceanography, 66(1): 85–94. doi: 10.1007/s10872-010-0007-y
    [6]
    D’Asaro E, Lee C, Rainville L, et al. 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science, 332(6027): 318–322. doi: 10.1126/science.1201515
    [7]
    De Ruijter W P M. 1983. Effects of velocity shear in advective mixed-layer models. Journal of Physical Oceanography, 13(9): 1589–1599. doi: 10.1175/1520-0485(1983)013<1589:EOVSIA>2.0.CO;2
    [8]
    Dong Jihai, Zhong Yisen. 2018. The spatiotemporal features of submesoscale processes in the northeastern South China Sea. Acta Oceanologica Sinica, 37(11): 8–18. doi: 10.1007/s13131-018-1277-2
    [9]
    Donlon C J, Martin M, Stark J, et al. 2011. The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of the Environment, 116: 140–158
    [10]
    Feng Baoxin, Liu Hailong, Lin Pengfei. 2020. Effects of Kuroshio intrusion optimization on the simulation of mesoscale eddies in the northern South China Sea. Acta Oceanologica Sinica, 39(3): 12–24. doi: 10.1007/s13131-020-1565-5
    [11]
    Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422(6931): 513–515. doi: 10.1038/nature01507
    [12]
    Henyey F S, Wright J, Flatté S M. 1986. Energy and action flow through the internal wave field: An eikonal approach. Journal of Geophysical Research: Oceans, 91(C7): 8487–8495. doi: 10.1029/JC091iC07p08487
    [13]
    Hoskins B J. 1974. The role of potential vorticity in symmetric stability and instability. Quarterly Journal of Royal Meteorology Society, 100(425): 480–482. doi: 10.1002/qj.49710042520
    [14]
    Hosoda K, Kawamura H, Lan K W, et al. 2012. Temporal scale of sea surface temperature fronts revealed by microwave observations. IEEE Geoscience and Remote Sensing Letters, 9(1): 3–7. doi: 10.1109/LGRS.2011.2158512
    [15]
    Hu Jianyu, Zheng Quanan, Sun Zhenyu, et al. 2012. Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. Journal of Geophysical Research: Oceans, 117(C3): C03010
    [16]
    Huang Xiaodong, Zhang Zhiwei, Zhang Xiaojiang, et al. 2017. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. Journal of Physical Oceanography, 47(7): 1539–1554. doi: 10.1175/JPO-D-16-0111.1
    [17]
    Jing Zhiyou, Qi Yiquan, Du Yan, et al. 2015. Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys. Journal of Geophysical Research: Oceans, 120(3): 1993–2006. doi: 10.1002/2014JC010601
    [18]
    Johnston T, Rudnick D, Pallàs-Sanz E. 2011. Elevated mixing at a front. Journal of Geophysical Research: Oceans, 116(C11): C11033. doi: 10.1029/2011JC007192
    [19]
    Lévy M, Klein P, Tréguier AM. 2001. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. Journal of Marine Research, 59(4): 535–565. doi: 10.1357/002224001762842181
    [20]
    Liang Changrong, Chen Guiying, Shang Xiaodong. 2017. Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea. Ocean Dynamics, 67(5): 597–609. doi: 10.1007/s10236-017-1051-6
    [21]
    Liu Zhiyu, Lian Qiang, Zhang Fangtao, et al. 2017. Weak thermocline mixing in the North Pacific low-latitude western boundary current system. Geophysical Research Letters, 44(20): 10530–10539. doi: 10.1002/2017GL075210
    [22]
    McWilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A—Mathematical, Physical and Engineering Sciences, 472(2189): 20160117. doi: 10.1098/rspa.2016.0117
    [23]
    Nan Feng, Xue Huijie, Xiu Peng, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research: Atmospheres, 116(C12): C12045. doi: 10.1029/2011JC007386
    [24]
    Polzin K L, Garabato A C N, Huussen T N, et al. 2014. Finescale parameterizations of turbulent dissipation. Journal of Geophysical Research: Oceans, 119(2): 1383–1419. doi: 10.1002/2013JC008979
    [25]
    Qiu Chunhua, Cui Yongsheng, Hu Shiqi, et al. 2017a. Seasonal variation of Guangdong coastal thermal front based on merged satellite data. Journal of Tropical Oceanography (in Chinese), 36(5): 16–23
    [26]
    Qiu Chunhua, Mao Huabin, Liu Hailong, et al. 2019a. Deformation of a warm eddy in the northern South China Sea. Journal of Geophysical Research: Oceans, 124(8): 5551–5564. doi: 10.1029/2019JC015288
    [27]
    Qiu Chunhua, Mao Huabin, Wang Yanhui, et al. 2019b. An irregularly shaped warm eddy observed by Chinese underwater gliders. Journal of Oceanography, 75(2): 139–148. doi: 10.1007/s10872-018-0490-0
    [28]
    Qiu Chunhua, Mao Huabin, Yu Jiancheng, et al. 2015. Sea surface cooling in the Northern South China Sea observed using Chinese sea-wing underwater glider measurements. Deep Sea Research Part I: Oceanographic Research Papers, 105: 111–118. doi: 10.1016/j.dsr.2015.08.009
    [29]
    Qiu Bo, Nakano T, Chen Shuiming, et al. 2017b. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nature Communications, 8: 14055. doi: 10.1038/ncomms14055
    [30]
    Ruiz S, Claret M, Pascual A, et al. 2019. Effects of oceanic mesoscale and submesoscale frontal processes on the vertical transport of phytoplankton. Journal of Geophysical Research: Oceans, 124(8): 5999–6014. doi: 10.1029/2019JC015034
    [31]
    Sadarjoen I A, Post F H. 2000. Detection, quantification, and tracking of vortices using streamline geometry. Computers & Graphics, 24(3): 333–341
    [32]
    Shang Xiaodong, Liang Changrong, Chen Guiying. 2017. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Science, 13(3): 503–519. doi: 10.5194/os-13-503-2017
    [33]
    Shu Yeqiang, Xiu Peng, Xue Huijie, et al. 2016. Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241
    [34]
    Stone P H, Nemet B. 1996. Baroclinic adjustment: A comparison between theory, observations, and models. Journal of the Atmospheric Sciences, 53(12): 1663–1674. doi: 10.1175/1520-0469(1996)053<1663:BAACBT>2.0.CO;2
    [35]
    Su Danyi, Lin Pengfei, Mao Huabin, et al. 2020. Features of slope intrusion mesoscale eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 125(2): e2019JC015349
    [36]
    Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
    [37]
    Sun Zhongbin, Zhang Zhiwei, Zhao Wei, et al. 2016. Interannual modulation of eddy kinetic energy in the northeastern South China Sea as revealed by an eddy-resolving OGCM. Journal Geophysical Research: Oceans, 121(5): 3190–3201. doi: 10.1002/2015JC011497
    [38]
    Torres H S, Klein P, Menemenlis D, et al. 2018. Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. Journal of Geophysical Research: Oceans, 123(11): 8084–8105. doi: 10.1029/2018JC014438
    [39]
    Tuo Pengfei, Yu Jinyi, Hu Jianyu. 2019. The changing influences of ENSO and the Pacific meridional mode on mesoscale eddies in the South China Sea. Journal of Climate, 32(3): 685–700. doi: 10.1175/JCLI-D-18-0187.1
    [40]
    Wang Guihua, Chen Dake, Su Jilan. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. Journal of Physical Oceanography, 38(3): 726–732. doi: 10.1175/2007JPO3868.1
    [41]
    Wang Dongxiao, Liu Yun, Qi Yiquan, et al. 2001. Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophysical Research Letters, 28(20): 3963–3966. doi: 10.1029/2001GL013306
    [42]
    Wang Qiang, Zeng Lili, Li Jian, et al. 2018. Observed cross-shelf flow induced by mesoscale eddies in the northern South China Sea. Journal of Physical Oceanography, 48(7): 1609–1628. doi: 10.1175/JPO-D-17-0180.1
    [43]
    Xie Shangping. 2004. Satellite observations of cool ocean-atmosphere interaction. Bulletin of the American Meteorological Society, 85(2): 195–208. doi: 10.1175/BAMS-85-2-195
    [44]
    Yang Qingxuan, Nikurashin M, Sasaki H, et al. 2019. Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Scientific Reports, 9: 556. doi: 10.1038/s41598-018-36610-x
    [45]
    Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    [46]
    Yu Xiaolong, Garabato A C N, Martin A P, et al. 2019. An annual cycle of submesoscale vertical flow and restratification in the upper ocean. Journal of Physical Oceanography, 49(6): 1439–1461. doi: 10.1175/JPO-D-18-0253.1
    [47]
    Yuan Dongliang, Han Weiqing, Hu Dunxin. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11): C11007. doi: 10.1029/2005JC003412
    [48]
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    [49]
    Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. 2020. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations. Journal of Geophysical Research: Oceans, 125(2): e2019JC015404
    [50]
    Zhang Zhiwei, Zhao Wei, Tian Jiwei, et al. 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. Journal of Geophysical Research: Atmospheres, 118(12): 6479–6494
    [51]
    Zheng Quanan, Lin Hui, Meng Junmin, et al. 2008. Sub-mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research: Oceans, 113(C4): C04032
    [52]
    Zhong Yisen, Bracco A, Tian Jiwei, et al. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Scientific Reports, 7: 44011. doi: 10.1038/srep44011
    [53]
    Zhuang Wei, Xie Shangping, Wang Dongxiao, et al. 2010. Intraseasonal variability in sea surface height over the South China Sea. Journal of Geophysical Research: Oceans, 115(C4): C04010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (393) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return