Volume 41 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
Yanmin Zhang, Yifan Wang, Yunhua Wang, Yining Bai, Chaofang Zhao. The influences of environmental factors on the air-sea coupling coefficient[J]. Acta Oceanologica Sinica, 2022, 41(2): 147-155. doi: 10.1007/s13131-021-1769-3
Citation: Yanmin Zhang, Yifan Wang, Yunhua Wang, Yining Bai, Chaofang Zhao. The influences of environmental factors on the air-sea coupling coefficient[J]. Acta Oceanologica Sinica, 2022, 41(2): 147-155. doi: 10.1007/s13131-021-1769-3

The influences of environmental factors on the air-sea coupling coefficient

doi: 10.1007/s13131-021-1769-3
Funds:  The National Key Research and Development Program of China under contract No. 2016YFC1401008; the National Natural Science Foundation of China under contract Nos 41976167 and 41576170; the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606404.
More Information
  • Corresponding author: E-mail: yunhuawang@ouc.edu.cn
  • Received Date: 2020-09-18
  • Accepted Date: 2020-12-20
  • Available Online: 2021-12-01
  • Publish Date: 2022-02-01
  • The response relationship between equivalent neutral wind speed anomaly (ENWSA) and sea-air temperature difference anomaly (SATDA) has been analyzed over four typical sea regions, i.e., the Kuroshio Extension, the Gulf Stream, the Brazil-Malvinas Confluence and the Agulhas Return Current. The results show that ENWSA is more sensitive to SATDA than sea surface temperature anomaly (SSTA), which implies that SATDA seems to be a more suitable parameter than SSTA to analyze the mesoscale air-sea interactions. Here, the slope of the linear relation between ENWSA and SATDA is defined as the air-sea coupling coefficient. It is found that the values of the coupling coefficient over the four typical sea areas have obvious seasonal variations and geographical differences. In order to reveal the reason of the seasonal variation and geographical difference of the coupling coefficient, the influences of some environmental background factors, such as the spatially averaged sea surface temperature (SST), the spatially averaged air temperature, the spatially averaged sea-air temperature difference and the spatially averaged equivalent neutral wind speed, on the coupling coefficient are discussed in detail. The results reveal that the background sea-air temperature difference is an important environmental factor which directly affects the magnitude of the coupling coefficients, meanwhile, the seasonal and geographical variations of the coupling coefficient.
  • loading
  • [1]
    Chelton D B, Esbensen S K, Schlax M G, et al. 2001. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. Journal of Climate, 14(7): 1479–1498. doi: 10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2
    [2]
    Chelton D B, Schlax M G, Freilich M H, et al. 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303(5660): 978–983. doi: 10.1126/science.1091901
    [3]
    Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the California Current System. Journal of Physical Oceanography, 37(3): 495–517. doi: 10.1175/JPO3025.1
    [4]
    Chelton D B, Xie Shangping. 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4): 52–69. doi: 10.5670/oceanog.2010.05
    [5]
    Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11(3): 324–336. doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
    [6]
    Liu W T, Xie Xiaosu. 2008. Ocean-atmosphere momentum coupling in the Kuroshio Extension observed from space. Journal of Oceanography, 64(4): 631–637. doi: 10.1007/s10872-008-0053-x
    [7]
    Liu W T, Xie Xiaosu, Niiler P P. 2007. Ocean-atmosphere interaction over Agulhas Extension meanders. Journal of Climate, 20(23): 5784–5797. doi: 10.1175/2007JCLI1732.1
    [8]
    Liu W T, Xie Xiaosu, Polito P S, et al. 2000. Atmospheric manifestation of tropical instability wave observed by QuikSCAT and tropical rain measuring mission. Geophysical Research Letter, 27(16): 2545–2548. doi: 10.1029/2000GL011545
    [9]
    Liu W T, Zhang Anzhen, Bishop J K B. 1994. Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. Journal of Geophysical Research: Oceans, 99(C6): 12623–12637. doi: 10.1029/94JC00604
    [10]
    Maloney E D, Chelton D B. 2006. An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. Journal of Climate, 19(12): 2743–2762. doi: 10.1175/JCLI3728.1
    [11]
    Mantua N J, Hare S R, Zhang Yuan, et al. 1997. A pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78(6): 1069–1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
    [12]
    Monin A S, Yaglom A M, Lumley J L. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence. Cambridge, MA, USA: MIT Press
    [13]
    Namias J, Cayan D R. 1981. Large-scale air-sea interactions and short-period climatic fluctuatioins. Science, 214(4523): 869–876. doi: 10.1126/science.214.4523.869
    [14]
    Nonaka M, Xie Shangping. 2003. Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback. Journal of Climate, 16(9): 1404–1413. doi: 10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2
    [15]
    Okumura Y, Xie Shangping, Numaguti A, et al. 2001. Tropical Atlantic air-sea interaction and its influence on the NAO. Geophysical Research Letter, 28(8): 1507–1510. doi: 10.1029/2000GL012565
    [16]
    O’Neill L W. 2012. Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. Journal of Climate, 25(5): 1544–1569. doi: 10.1175/JCLI-D-11-00121.1
    [17]
    O’Neill L W, Chelton D B, Esbensen S K. 2003. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. Journal of Climate, 16(14): 2340–2354. doi: 10.1175/2780.1
    [18]
    O’Neill L W, Chelton D B, Esbensen S K, et al. 2005. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. Journal of Climate, 18(14): 2706–2723. doi: 10.1175/JCLI3415.1
    [19]
    O’Neill L W, Chelton D B, Esbensen S K. 2010. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. Journal of Climate, 23(2): 255–281. doi: 10.1175/2009JCLI2613.1
    [20]
    Park K A, Cornillon P C. 2002. Stability-induced modification of sea surface winds over Gulf Stream rings. Geophysical Research Letter, 29(24): 64-1–64-4
    [21]
    Park K A, Cornillon P C, Codiga D L. 2006. Modification of surface winds near ocean fronts: effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. Journal of Geophysical Research: Oceans, 111(C3): C03021
    [22]
    Pezzi L P, Souza R B, Dourado M S, et al. 2005. Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region. Geophysical Research Letter, 32(22): L22603
    [23]
    Small R J, deSzoeke S P, Xie S P, et al. 2008. Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4): 274–319
    [24]
    Small R J, Xie Shangping, Wang Yuqing. 2003. Numerical simulation of atmospheric response to Pacific tropical instability waves. Journal of Climate, 16(22): 3723–3741. doi: 10.1175/1520-0442(2003)016<3723:NSOART>2.0.CO;2
    [25]
    Song Qingtao, Chelton D B, Esbensen S K, et al. 2009. Coupling between sea surface temperature and low-level winds in mesoscale numerical models. Journal of Climate, 22(1): 146–164. doi: 10.1175/2008JCLI2488.1
    [26]
    Tokinaga H, Tanimoto Y, Xie Shangping. 2005. SST-induced surface wind variations over the Brazil-Malvinas Confluence: satellite and in situ observations. Journal of Climate, 18(17): 3470–3482. doi: 10.1175/JCLI3485.1
    [27]
    Vecchi G A, Xie Shangping, Fischer A S. 2004. Ocean-atmosphere covariability in the western Arabian Sea. Journal of Climate, 17(6): 1213–1224. doi: 10.1175/1520-0442(2004)017<1213:OCITWA>2.0.CO;2
    [28]
    Wallace J M, Smith C, Jiang Quanrong. 1990. Spatial patterns of atmosphere-ocean interaction in the northern winter. Journal of Climate, 3(9): 990–998. doi: 10.1175/1520-0442(1990)003<0990:SPOAOI>2.0.CO;2
    [29]
    Wang Yunhua, Zhang Yanmin, Chen Haihua, et al. 2014. Effects of atmospheric stability and wind fetch on microwave sea echoes. IEEE Transactions on Geoscience and Remote Sensing, 52(2): 929–935. doi: 10.1109/TGRS.2013.2245673
    [30]
    Wu Jin. 1980. Wind-stress coefficients over sea surface near neutral conditions—a revisit. Journal of Physical Oceanography, 10(5): 727–740. doi: 10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2
    [31]
    Xie Shangping. 2004. Satellite observations of cool ocean-atmosphere interaction. Bulletin of the American Meteorological Society, 85(2): 195–208. doi: 10.1175/BAMS-85-2-195
    [32]
    Xie Shangping, Ishiwatari M, Hashizume H, et al. 1998. Coupled ocean-atmospheric waves on the equatorial front. Geophysical Research Letter, 25(20): 3863–3866. doi: 10.1029/1998GL900014
    [33]
    Xu Haiming, Tokinaga H, Xie Shangping. 2010. Atmospheric effects of the Kuroshio large meander during 2004–05. Journal of Climate, 23(17): 4704–4715. doi: 10.1175/2010JCLI3267.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (419) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return